
Optimizing ASP.NET
with C++ AMP on the GPU

High-Performance Parallel Code in the AWS Cloud

Scott Zimmerman

April 2015

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 2 of 42

© 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments, conditions

or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities

and liabilities of AWS to its customers are controlled by AWS agreements, and

this document is not part of, nor does it modify, any agreement between AWS

and its customers.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use

this file except in compliance with the License. A copy of the License is located at

http://aws.amazon.com/apache2.0/ or in the "license" file accompanying this

file. This code is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, either express or implied. See the License for the

specific language governing permissions and limitations under the License.

Portions of the code were developed by Heaton Research and are licensed under

the Apache License, Version 2.0, available here:

https://www.apache.org/licenses/LICENSE-2.0.html

Portions of the code were developed by Microsoft Corporation and are licensed

under Microsoft MSPL, available here: http://opensource.org/licenses/ms-pl

http://aws.amazon.com/apache2.0/
https://www.apache.org/licenses/LICENSE-2.0.html
http://opensource.org/licenses/ms-pl

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 3 of 42

Contents
Abstract 4

Introduction 4

Introduction to C++ AMP 6

Introduction to Amazon EC2 7

Install the AWS Toolkit for Visual Studio 7

Set up the Amazon EC2 Windows Server Instance with NVIDIA GPU 7

Create a Security Group with the AWS Toolkit 8

Launch G2 Instance in Amazon EC2 with the AWS Toolkit 11

Connect to the Instance to Install the NVIDIA Driver and Visual C++

Redistributable 14

Comparing the Performance of Various Matrix Multiplication Algorithms 20

Working with the Code 21

Deploying the Web Application with AWS Elastic Beanstalk 21

Using ebextensions with AWS Elastic Beanstalk 24

Model Code for Data Passed Between Controller and View 25

Accessing the Model in the View 25

Controller Code to Invoke Each Algorithm and Populate the Model 26

C# Basic Serial (CPU) 31

C# Optimized Serial (CPU) 32

C# Parallel with TPL (CPU) 33

C++ Basic Serial (CPU) 33

C++ Parallel with PPL (CPU) 36

C++ Parallel with AMP (GPU) 37

C++ Parallel with AMP Tiling (GPU) 39

Conclusion 40

Further Reading 41

Notes 41

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 4 of 42

Abstract
This whitepaper is intended for Microsoft Windows developers who are

considering writing high-performance parallel code in Amazon Web Services

(AWS) using the Microsoft C++ Accelerated Massive Parallelism (C++ AMP)

library. This paper describes an ASP.NET Model-View-Controller (MVC) web

application written in C# that invokes C++ functions running on the graphics

processing unit (GPU) for matrix multiplication. Since matrix multiplication is of

order N-cubed, multiplying two 1024 x 1024 matrixes requires over one billion

multiplications, and is therefore an example of a compute-intensive operation

that would be a good candidate for GPU programming. This paper shows how to

use AWS Elastic Beanstalk and the AWS Toolkit for Visual Studio to launch a

Microsoft Windows Server instance with an NVIDIA GPU in the Amazon Elastic

Compute Cloud (Amazon EC2) on AWS.

Introduction
Certain types of parallel algorithms can run hundreds of times faster on a GPU

than similar serial algorithms on a CPU. This paper describes matrix

multiplication as one example of a parallel algorithm that is suitable for GPU

programming. Performance increases of this order are obviously very attractive

for certain workloads, but there are several technologies that must be understood

and integrated in order to achieve these gains.

First, you’ll need a GPU programming language or library. The next section

briefly discusses the advantages of Microsoft C++ AMP, and this whitepaper

includes working code examples written in C++ AMP. Second, this paper will

describe how to use the AWS Toolkit for Visual Studio to launch Amazon EC2

instances with a GPU, connect to them remotely, and install the NVIDIA GPU

graphics driver. Third, although the focus here is on C++ programming, we’ll

need a simple user interface to display results, and it’s typically easier to do this

in C# than in C++. So this whitepaper shows a small program written in C# that

uses ASP.NET MVC to invoke a function written in C++ AMP. Fourth, bringing

ASP.NET MVC into the solution means you also need to add the Internet

Information Services (IIS) role to Windows Server and deploy the web

application. This will be accomplished from inside Visual Studio with the AWS

Elastic Beanstalk service. Of course it’s not necessary to develop a web front-end

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 5 of 42

or use C# to take advantage of C++ AMP, but that is a common use case, so this

whitepaper covers how to integrate those technologies with C++ and Windows

Server running on Amazon EC2.

Figure 1 shows how the ASP.NET MVC architecture spans the physical tiers in

this application, and the coding technologies that will be used on each tier. Note

that this simple application doesn’t include a data tier. Also, the application tier is

only a logical concept in this scenario. It is a way of looking at the C# and C++

algorithms as distinct from the web application, even though they run on the CPU

or GPU of the same web server virtual machine.

Figure 1: The ASP.NET MVC Architecture and Languages Used

This application starts with a basic matrix multiplication function in C# to show

the simplest way to implement the solution. Then the program is optimized six

times, each time adding a technology and comparing performance. Subsequent

sections of this paper will describe how each variation is coded, and how to set up

the technologies.

Download the source code and Visual Studio solution.1

Here’s an overview of the seven matrix multiplication algorithms that will be

illustrated:

Algorithm Description

C# Basic Serial (CPU) Written in C# to serve as a performance baseline on which we

hope to improve by using C++.

C# Improved Serial (CPU) Optimizes the order of loop indexes to improve performance.

http://d0.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 6 of 42

Algorithm Description

C# Parallel with TPL (CPU) Uses the .NET Framework Task Parallel Library (TPL). When run

on a machine with multiple cores, this multithreaded algorithm

improves performance when compared with the serial C# version.

C++ Basic Serial (CPU) Converts the basic serial algorithm to C++ to demonstrate how to

invoke C++ code from ASP.NET MVC C# code running on IIS.

C++ Parallel with PPL (CPU) Rewrites the serial C++ function to make it parallel by using the

Microsoft Parallel Patterns Library (PPL).

C++ Parallel with AMP (GPU) Rewrites the parallel C++ function to run on the GPU using basic

techniques with C++ AMP.

C++ Parallel with AMP Tiling

(GPU)

Rewrites the AMP C++ function to use AMP with tiling.

Implementing tiling algorithms takes a bit more work than basic

AMP, but if done carefully, it can improve performance.

The performance comparisons illustrated in this application are not meant to be

scientific benchmarks, but they may provide useful insight into the potential

relative performance of the various techniques. The algorithms are not intended

to be optimal. If you really need to do fast matrix multiplications, you should look

into tested and optimized libraries such as Basic Linear Algebra Subprograms

(BLAS) or Linear Algebra Package (LAPACK).

Introduction to C++ AMP
Until now, programming the GPU has been tedious or non-portable, or limited to

the C language. Microsoft C++ AMP enables Visual C++ developers to optimize

compute-intensive programs in a highly productive way. AMP is an open

specification for an extension to standard C++ that greatly simplifies porting

parallel algorithms from the CPU to the GPU. AMP is also elegant and takes

advantage of modern C++ features such as lambdas. You’ll see that after taking

the first step with AMP, parallel code still looks similar to the original serial code.

The popular OpenCL library is portable across multiple operating systems and

GPU hardware vendors. It’s been around longer than C++ AMP and is recognized

for providing very fast run-time performance. However, OpenCL is a C-language

library that misses out on modern C++ features.

AMP is portable across GPU hardware, but because it’s designed for DirectX, it

runs on Windows. In 2012, Intel released a free download called Shevlin Park as

a proof-of-concept that enables C++ AMP code to run on top of OpenCL, which

means your C++ AMP code can run on Linux and other operating systems.

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 7 of 42

In 2013, the HSA Foundation published an open-source C++ AMP compiler2 that

outputs OpenCL code. This also enables you to write C++ AMP code to run on

Linux and other operating systems.

Microsoft maintains a C++ AMP Algorithms Library modeled after the Standard

Template Library3 and a few dozen C++ AMP sample projects on the AMP blog.4

Introduction to Amazon EC2
Amazon EC2 is a service that allows customers to run Windows Server and Linux

in the AWS cloud. Amazon EC2 provides over 30 types of compute instances,5

including memory-optimized, storage-optimized, and GPU-enabled instances.

The G2 double extra-large (g2.2xlarge) instance type has eight virtual CPUs

and an NVIDIA GPU with 1,536 CUDA cores and 4 GB of video memory. CUDA is

a parallel computing platform and programming model invented by NVIDIA.6

Install the AWS Toolkit for Visual Studio
This paper assumes that you have Visual Studio Professional 2013 or Visual

Studio Community 2013 already installed on your computer. It is possible to

write the code with Visual Studio Express; however, that edition doesn’t support

plug-ins such as the AWS Toolkit for Visual Studio. The AWS Toolkit makes it

very convenient to perform several account management tasks without ever

leaving Visual Studio. You’ll use the AWS Toolkit extensively to launch and

administer an Amazon EC2 instance in AWS, although it’s also possible to do that

with the Amazon EC2 console in a web browser.

Please download and install the AWS Toolkit for Visual Studio7 from the AWS

website. For this whitepaper, please ensure you have at least version 1.8.1.0 of the

AWS Toolkit for Visual Studio. After installing the toolkit, you should see an

option for the AWS Explorer appear in the Visual Studio View menu.

Set up the Amazon EC2 Windows Server

Instance with NVIDIA GPU
This paper assumes that you have an AWS account with permission to launch

Amazon EC2 instances. AWS provides a limited free tier8 for one year for new

customers to experiment with cloud computing. The free tier covers several

http://www.hsafoundation.com/bringing-camp-beyond-windows-via-clang-llvm/
https://ampalgorithms.codeplex.com/documentation
https://ampalgorithms.codeplex.com/documentation
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://aws.amazon.com/ec2/instance-types/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://aws.amazon.com/visualstudio/
http://aws.amazon.com/free/

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 8 of 42

services, including Amazon EC2. However, it applies to the T2.micro instance

type, not the G2 instance type.

Important Please be aware that there is a cost to run the G2 instance type

used in this paper. This profile in the AWS Simple Monthly Calculator shows the

estimated cost to run one on-demand G2 instance with Windows Server non-stop

for a month. Note that significant cost savings can be achieved by using spot or

reserved instances rather than on-demand instances, and by stopping the

instance when it’s not in use.

The following sections explain how to use the AWS Toolkit for Visual Studio to

launch a G2 instance with Windows Server.

Create a Security Group with the AWS Toolkit
Microsoft Remote Desktop Connection (RDC) is useful for manually

administering Windows Server remotely, but the NVIDIA display driver that you

need for the GPU, and the Remote Desktop Protocol (RDP) used by RDC, are not

compatible. RealVNC offers a free version of their VNC Server software that

enables remote connections graphically, and it uses a different protocol that is

compatible with the NVIDIA driver. So before you install the NVIDIA driver, you

will need to install VNC Server on the instance. Then you can disconnect from

RDP, reconnect over VNC, and install the NVIDIA driver. Don’t worry about

installing that now; the detailed instructions are provided later.

RDP uses port 3389. VNC Server uses port 5900. And of course the web

application will use port 80. The default security group when launching a

Windows Server instance only opens port 3389. You could simply add rules to the

default group after you launch the instance, but instead, you’ll create your own

custom security group and give it a name. You’ll also use this custom security

group later when you deploy the web application with AWS Elastic Beanstalk.

To create a security group in the AWS Toolkit:

1. In Visual Studio, on the View menu, click AWS Explorer (or press

Ctrl+K, A).

2. Expand Amazon EC2, and double-click Security Groups. Your security

groups are displayed in the right pane. On the menu bar above that pane,

http://calculator.s3.amazonaws.com/index.html#r=IAD&s=EC2&key=calc-ED8A2F74-BAF7-432A-924F-F25A6DFE9DA0

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 9 of 42

click Create Security Group. Fill in the Name and Description, and

leave the No VPC option selected, as shown in Figure 2. Click OK.

Figure 2: Creating a Security Group

3. Step 2 creates an empty security group. Now let’s add the rules to it. In the

lower pane, click Add Permission to open the Add IP Permission

dialog box, as shown in Figure 3. Leave Protocol as TCP. For Port

Range, type 5900 for both the Start and End fields. Click OK.

Caution For RDP and VNC, it’s highly advisable to limit the Source CIDR

to your local IP address, with either /32 or an appropriate subnet of your

private network appended to the address. You may use the estimated IP

address shown in the Add IP Permission dialog box (Figure 3), or you can

type “what is my IP” into a search engine to see your public IP address. AWS

creates a default RDP rule with Source CIDR as 0.0.0.0/0 (which means the

whole Internet) to simplify the experience for new users who are launching an

instance. But opening VNC and RDP ports to the whole Internet means that

hackers can try to guess your administrator password to gain control of your

server.

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 10 of 42

Figure 3: Adding a Rule in the Security Group

4. Repeat step 3 to add port 3389 (for Protocol, you can select RDP).

5. Repeat step 3 once more to add port 80 (for Protocol, you can select

HTTP). With your security group selected in the top pane, your rules

should appear in the middle pane, similar to Figure 4.

Figure 4: You should Have Three Rules in Your Security Group

Note This security group will serve you while you are installing software on the

Amazon EC2 instance. After you complete that task and create an Amazon

Machine Image (AMI), AWS Elastic Beanstalk will apply an automatic security

group with only ports 22 and 80 open. So if you need to manually administer

your Amazon EC2 instance after deploying with AWS Elastic Beanstalk, you must

add port 5900 to that security group.

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 11 of 42

Launch G2 Instance in Amazon EC2 with the AWS

Toolkit
Now that you have a custom security group, you’re ready to launch a G2 instance:

1. In Visual Studio, on the View menu, click AWS Explorer (or press Ctrl+K,

A). AWS Explorer appears as in Figure 5, where it’s shown with the Amazon

EC2 service expanded.

Figure 5: AWS Explorer in AWS Toolkit

2. In AWS Explorer, expand Amazon EC2 as shown in Figure 5. Right-click

Instance, and then click New Instance.

3. In the Quick Launch wizard, click Advanced. AWS has created special

AMIs to optimize the deployment time for IIS and the .NET Framework

with AWS Elastic Beanstalk. The wizard lets you pick one of those AMIs as

your base image. After you get your instance prepared with the NVIDIA

drivers, you’ll save your own AMI.

4. In the Launch new Amazon EC2 Instance dialog box (see Figure 6),

type .net beanstalk in the search text box (the third Viewing field). Then

change the setting of the first field from Owned by me to Amazon

Images. Do it in that order; otherwise, it takes longer. Click the Name

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 12 of 42

column heading to sort the AMIs by name. Expand the Description

column so you can see the dates the images were created. Scroll down to

select the most recently created Windows Server 2012 R2 (not core) image.

At the time this screenshot was taken, the latest version of the Beanstalk

Container was v2.0.2.6. However, new images are released from time to

time to incorporate the latest Windows updates from Microsoft, so you’lll

likely see a newer version. Now click Next.

Figure 6: Choosing an AMI

5. In the AMI Options dialog box, in the Instance Type list, select GPU

Double Extra Large. Click Next.

6. In the Storage dialog box, click Next.

7. In the Tags dialog box, provide a name for the instance so it’s easy to

distinguish it.

8. In the Security dialog box (Figure 7), click Create New Key Pair, and

give it a name. Choose the security group you created earlier (this is very

important).

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 13 of 42

Figure 7: Choosing the Security Group You Created Earlier

9. Click Launch.

10. In the AWS Explorer left pane, under Amazon EC2, double-click

Instances. That will display the panel of your instances, and you should

see that your new instance is launching. The status will show as “pending”

for a few minutes, and then it will change to “running.” You can continue to

the next step while the launch is pending.

11. You’ll need an Elastic IP address for this instance so you can easily

reconnect to it if you stop and restart the instance. Right-click the instance

(even if the status is pending), and then click Associate Elastic IP. In the

Attach Elastic IP to Instance dialog box (Figure 8), click Create new

Elastic IP, and then click OK.

Figure 8: Creating a New Elastic IP

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 14 of 42

Note Remember, there’s an hourly cost for the instance while it’s running, so

it’s a good idea to stop (not terminate) the instance and restart it if you’re not

able to finish all the steps in this whitepaper in one session.

Connect to the Instance to Install the NVIDIA Driver

and Visual C++ Redistributable
In this section, you’ll download and install VNC Server on the instance using

Microsoft Internet Explorer. But before you can do that, you’ll need to turn off

the Internet download protection feature that is enabled by default in Internet

Explorer 11 on Windows Server 2012 R2.

While you’re on the instance, you’ll also download and install the Visual C++

2013 redistributable package. Doing this manually is simpler than creating a

setup program with a merge module. The reason you’ll do this now is so you can

create a fully prepared AMI of the instance that you can use later to deploy your

web application with AWS Elastic Beanstalk.

For some of the steps in this section, you’ll use the AWS Toolkit on your local

workstation; for others, you’ll use the Amazon EC2 instance connected through

RDC or VNC. The transitions will be mentioned as needed.

After the status of your instance changes from “pending” to “running,” follow

these steps in the AWS Toolkit:

1. The AWS Toolkit has a convenient option to log in directly with the key pair

we created previously without requiring you to enter the administrator

password. This works until you change the password on the instance, which

you’ll need to do to connect with VNC. Right-click the instance in the AWS

Toolkit, and then click Open Remote Desktop. In the Open Remote

Desktop dialog box (Figure 9), leave the Use EC2 keypair to log on

option selected, and then click OK. The toolkit automatically decrypts the

AWS-generated password from the key pair, passes it to Microsoft RDC,

launches RDC, and then logs you into the Amazon EC2 instance.

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 15 of 42

Figure 9: Open Remote Desktop

For steps 2-7, you’ll use RDC connected to the instance.

During steps 2-12, if you get a popup message indicating that Windows has

updates to install on the instance, you should go ahead and apply those so

they’ll be included in the AMI you’ll create in step 14. If Windows Update

requires a reboot, restart your machine and then resume these instructions

after reconnecting through RDC (or VNC Viewer).

2. You must first change the Windows administrator password on the

instance to a password you can remember. In Windows Server 2012 R2,

click the Windows icon (Start button) in the lower-left corner of your

screen to get to the Start menu. Click Administrative Tools. Double click

Computer Management. Expand Local Users and Groups. Click

once on Users. Right-click Administrator, and then click Set

Password. Click Proceed. Enter the new password, and then click OK.

Now the AWS-generated password is obsolete. Close Computer

Management.

3. To enable file downloads in Internet Explorer, click the Windows Start

button again. Click Server Manager. In the left pane, click Local

Server. You should see that Internet Explorer enhanced security

configuration is turned on by default. Click to turn it off for administrators,

and then click OK. Close Server Manager.

4. To run Visual C++ code, you’ll need to install the Visual C++ 2013

redistributable from Microsoft. It includes the C++ runtime and the AMP

DLL file. Click the Windows Start button again. Click Internet Explorer.

Browse to the Microsoft download page for Visual C++ Redistributable

http://www.microsoft.com/en-us/download/details.aspx?id=40784

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 16 of 42

Packages for Visual Studio 2013.9 Click Download, and choose the file

vcredist_x64.exe from the list of downloads. Run the program after

downloading it.

5. Open Internet Explorer. Browse to the RealVNC website.10 Download VNC

Server for Windows. The free version is adequate for this whitepaper, but

you will need to register with RealVNC to get a license. Install VNC Server

(you don’t need to install the Printer Driver or VNC Viewer).

6. On the Windows Start menu, click All Programs to display all installed

applications. Under VNC, click Enter VNC Server License Key. Go

through the VNC wizard to license your server software.

7. Now you can close RDC, but leave the instance running.

Now that you will no longer be using RDP with the instance, we

recommend that you delete the security group rule that permits RDP traffic

to the instance. You still need to leave port 5900 open for VNC.

8. Install and launch the VNC Viewer program on your local workstation.11 It

prompts you for the VNC Server public IP address. To retrieve the IP

address, right-click your instance in AWS Explorer, and then click

Properties. In the Properties dialog box (Figure 10), right-click the

Elastic IP value, and then click Copy. Paste the address into the VNC

Server address box in VNC Viewer.

Figure 10: Getting the Elastic IP Address from the Instance Properties

http://www.microsoft.com/en-us/download/details.aspx?id=40784
http://www.realvnc.com/
http://www.realvnc.com/

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 17 of 42

9. When you connect to the instance in VNC Viewer, it will prompt you to

press Ctrl+Alt+Delete to log in. Ordinarily, that keystroke sequence is

captured by your local workstation. The trick is to slide your mouse toward

the top center of the VNC Viewer window. That will drop down the toolbar

where you can click the Ctrl+Alt+Delete button to transmit the keystroke to

the remote machine. VNC Viewer shows the remote machine prompting

you for your Windows administrator password. Type the password that you

set in Windows when you logged in previously with RDC.

Do steps 10-12 on the instance while connected through VNC.

10. Open Internet Explorer to download the NVIDIA graphics driver. As of this

writing, the latest version on the NVIDIA support site is NVIDIA GRID

K520/K340 Release 33412 (Figure 11). Although the page title says 334, the

version is 335. Regardless, you should be fine if you get the latest version.

When the NVIDIA installation completes, it prompts you to reboot. You

can save time if you complete the next few steps first.

Figure 11: Installing the NVIDIA Graphics Driver

11. Don’t reboot after installing the NVIDIA graphics driver. Instead, on the

Windows Start screen, type ec2, and click to run the EC2Config service.

To make the image compatible with AWS Elastic Beanstalk, select the User

Data box on the General tab (Figure 12), and choose Random for the

Administrator Password on the Image tab (Figure 13). Click Apply,

and then click OK.

http://www.nvidia.com/download/driverResults.aspx/74642/en-us
http://www.nvidia.com/download/driverResults.aspx/74642/en-us

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 18 of 42

Figure 12: Checking User Data in EC2Config

Figure 13: Checking Random Password in

EC2Config

12. Click the Windows Start button. Click Administrative Tools. Double-

click Computer Management. Click Device Manager. Under display

adapters, you should see both the NVIDIA driver and the Microsoft Basic

Display Adapter, as shown in Figure 14. Right-click Microsoft Basic

Display Adapter, and then click Disable.

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 19 of 42

Figure 14: Disabling the Microsoft Basic Display Adapter in Device Manager

13. Now on your local workstation, in AWS Explorer, expand Amazon EC2,

Instances. Right-click your GPU instance, and choose Stop (do not

choose Terminate). This will automatically disconnect your VNC session.

Later, you’ll use AWS Elastic Beanstalk to start a new instance when you

deploy the code.

14. After the instance status changes from stopping to stopped, right-click your

GPU instance again in AWS Explorer, and then click Create Image (EBS

AMI). Give the image a name and description, and then let it run in the

background. There is a small storage charge for the images you save in

AWS, but it’s convenient to be able to reuse the images with everything pre-

installed if you decide to terminate the instance. Whenever you make

configuration changes or apply Windows Update on your instance in the

future, you should create a new image, and then optionally deregister your

older images.

15. After the image is created, look in AWS Explorer under Amazon EC2,

AMIs, and jot down the AMI ID of the image you just created. The ID is

case-sensitive.

Now that you have your own AMI, you’re ready to switch hats and start working

with the code in Visual Studio.

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 20 of 42

Comparing the Performance of Various

Matrix Multiplication Algorithms
Before you deploy the code with AWS Elastic Beanstalk, here’s a screenshot of the

web application after it completes running. The user interface is simple: it

consists of an HTML table listing the timing and relative performance (versus the

baseline) of each algorithm, as shown in Figure 15.

Figure 15: The ASP.NET MVC Application Displaying the Results

You’ll notice in the UI that the matrix size used is 1024 x 1024. There are 1,536

CUDA cores on the NVIDIA GPU instance type in Amazon EC2. Because the

outer loop of the algorithm will execute in parallel once for each row of the

matrix, 1024 was selected as the matrix size to take advantage of a large number

of the CUDA cores. Also note that the matrix size must be a multiple of the tile

size used in the AMP tiling algorithm.

You may also notice a couple of curiosities in the relative performance of the

algorithms. First, the performance of the basic C++ algorithm is almost identical

to the performance of the basic C# algorithm. That’s interesting, because many

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 21 of 42

developers suspect that C++ is about twice as fast as C#. A possible explanation

for this might be that the C# code is using ragged arrays, which is a known

optimization for the .NET Framework.

Another curiosity is that the parallel C# code that uses TPL is about seven times

faster than the serial C# code, but the parallel C++ code that uses PPL is only

about four times faster than the serial C++ code. Since there are eight virtual

cores on the instance, we might expect a parallel algorithm to be about seven

times faster. There are ways to get more out of PPL, but that’s outside the scope

of this paper.

Working with the Code
If you haven’t downloaded the Visual Studio solution and source code for this

whitepaper yet, you should download it now.13 Open the CSharpMatrixMultiply

solution in Visual Studio. The solution includes two projects. The ASP.NET MVC

project is adapted from the basic project that was created with the Visual Studio

New Project wizard. The following sections explain the C# code and C++ code in

the projects. The C# project has a dependency on the C++ DLL.

Deploying the Web Application with AWS Elastic

Beanstalk
To deploy the application by using the image and security group you created

earlier:

1. (Recommended) Switch the build configuration in Visual Studio from Debug

to Release.

2. In Solution Explorer, right-click the CSharpMatrixMultiply project (not the

CSharpMatrixMultiply solution), and then click Publish to AWS.

3. Click Next to accept the defaults in the first screen.

4. In the Application Environment dialog box, you must provide an

environment name, but the default name for this project is too long, so just

shorten it until the red border disappears from the text box (Figure 16). Click

Next.

http://d0.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 22 of 42

Figure 16: Specifying the Application Environment Details

5. In the Amazon EC2 Launch Configuration screen (Figure 17), verify that

Windows Server 2012 R2 is selected. For the instance type, select GPU

Double Extra Large. Select your key pair. Finally, you must provide the

AMI ID of the image you created previously. You can find that ID in the

Amazon EC2 console under Images, or in AWS Explorer, under Amazon

EC2, AMIs. Note that you must enter the ID in lowercase, e.g., ami-

12345678. Click Next, Next, and Deploy.

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 23 of 42

Figure 17: Picking the G2 instance type and Your Custom AMI ID

To ensure smooth builds and deployments of this solution with AWS Elastic

Beanstalk, make sure that the version of your AWS Toolkit for Visual Studio is

1.9.2.0 or higher.

The first time you deploy your project with AWS Elastic Beanstalk, it can take 5-

10 minutes. When it’s done, you may notice that the console or the AWS Toolkit

temporarily reports that the deployment is complete but with errors. This can be

disconcerting, but if you wait another minute you should see the status change to

success.

To run your application, open AWS Explorer and expand the AWS Elastic

Beanstalk node. Fully expand your environment name and double-click it to see

the status pane displayed. The status will show as “Launching” for a few minutes.

When the status changes to “Environment is healthy” (again, there could be a

delay after it temporarily reports that the environment is unhealthy), click the

URL at the top of the status pane. This should launch your default browser, and

now you get to wait another couple of minutes while the application performs all

seven matrix multiplications in the background. To keep things simple, the web

application does not display a progress bar or use an AJAX framework (such as

KnockoutJS) for partial updates. (In your production code, you would certainly

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 24 of 42

want to consider implementing a feature for the user to see the progress of the

computation running in the background, and to cancel it if desired.)

After running your application, you may change your program and need to

deploy it again. Redeployment is much faster than an initial deployment. In

Visual Studio Solution Explorer, right-click the menu for the web project (again,

right-click the project, not the solution), and then click Republish to

Environment.

Using ebextensions with AWS Elastic Beanstalk
When you run the web application, the C++ DLL gets loaded into the IIS process

on the web server. This locks the file on the server disk, which can prevent AWS

Elastic Beanstalk from being able to overwrite it with a new version when you

redeploy your application. One workaround is to connect through VNC and

restart the IIS service. Another solution is to use the ebextensions feature that is

built into AWS Elastic Beanstalk.

In Solution Explorer, notice the folder in the C# project called .ebextensions

(prefaced by a dot). Any text files in this folder that have a file extension of .config

will be executed on the server after the deployment. The only tricky thing is that

Visual Studio opens .config files in a different editor that doesn’t preserve line

breaks, so you need to right-click the file and choose Open With, Source Code

(Text) Editor. Here is the file:

commands:

 restart-iis:

 command: iisreset /restart

 waitForCompletion:0

This ebextensions file instructs AWS Elastic Beanstalk to run the iisreset

command on the server. For more information, see the blog post “Customizing

Windows Elastic Beanstalk Environments,” Part 114 and Part 215, on the AWS

.NET Development blog.

http://blogs.aws.amazon.com/net/post/Tx1RLX98N5ERPSA/Customizing-Windows-Elastic-Beanstalk-Environments-Part-1
http://blogs.aws.amazon.com/net/post/Tx2EMAYCXUW3HAK/Customizing-Windows-Elastic-Beanstalk-Environments-Part-2

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 25 of 42

Model Code for Data Passed Between Controller and

View
The following code is the Model class in the web application. In this application,

the data flows one way from the Controller to the View.

public class TaskResults

{

 public int NumAlgorithms { get; set; }

 public int Dimension { get; set; }

 public string[] Description { get; set; }

 public string[] Time { get; set; }

 public string[] RelativeSpeedLabel { get; set; }

 public int[] PercentOfMax { get; set; }

 public string StatusMessage { get; set; }

 public string AMPDeviceName { get; set; }

 public TaskResults(int _NumAlgorithms)

 {

 NumAlgorithms = _NumAlgorithms;

 Description = new string[NumAlgorithms];

 Time = new string[NumAlgorithms];

 RelativeSpeedLabel = new string[NumAlgorithms];

 PercentOfMax = new int[NumAlgorithms];

 StatusMessage = string.Empty;

 AMPDeviceName = string.Empty;

 }

}

Accessing the Model in the View
The following code is the first few lines of the file Index.cshtml. You see that the

TaskResults object created in the Controller is retrieved through the MVC

ViewBag, and then the @ syntax with the Razor Engine is used on the viewdata

object to insert data (e.g., @viewdata.AMPDeviceName) from the Model into

HTML.

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 26 of 42

@using CSharpMatrixMultiply.Models;

@{

 ViewBag.Title = "Home Page";

 var viewdata = ViewData["TaskResults"] as TaskResults;

}

<link href="../../Content/MyStyles.css" rel="stylesheet" type="text/css" />

<h3 style="font-family:verdana">Matrix Multiplication Results

 (@viewdata.Dimension X @viewdata.Dimension)</h3>

<h3 style="font-family:verdana">AMP Default Device:

@viewdata.AMPDeviceName</h3>

<h3 style="font-family:verdana; color:red">@viewdata.StatusMessage</h3>

Controller Code to Invoke Each Algorithm and

Populate the Model
The following code is the main Controller class in the web application. It

invokes each algorithm (except the first one) three times, calculates the average

elapsed time, and stores the results in the TaskResults class (the Model).

enum Algorithms // this must exactly duplicate enum in C++

{

 CSharp_Basic = 0,

 CSharp_ImprovedSerial = 1,

 CSharp_TPL = 2,

 CPP_Basic = 3,

 CPP_PPL = 4,

 CPP_AMP = 5,

 CPP_AMPTiling = 6

};

delegate float[][] CSharpMatrixMultiply(float[][] A, float[][] B, int N);

const int TESTLOOPS = 3;

const int N = 1024; // matrix size must be multiple of C++ tilesize

public unsafe ActionResult Index()

{

 int NumAlgorithms = Enum.GetNames(typeof(Algorithms)).Length;

 var rand = new Random();

 double[] durations = new double[NumAlgorithms];

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 27 of 42

 var TaskResults = new TaskResults(NumAlgorithms);

 TaskResults.Description[0] = "C# Basic Serial (CPU)";

 TaskResults.Description[1] = "C# Improved Serial (CPU)";

 TaskResults.Description[2] = "C# Parallel with TPL (CPU)";

 TaskResults.Description[3] = "C++ Basic Serial (CPU)";

 TaskResults.Description[4] = "C++ Parallel with PPL (CPU)";

 TaskResults.Description[5] = "C++ Parallel with AMP (GPU)";

 TaskResults.Description[6] = "C++ Parallel with AMP Tiling (GPU)";

 TaskResults.Dimension = N;

 TaskResults.NumAlgorithms = NumAlgorithms;

 ViewData["TaskResults"] = TaskResults;

 // According to

 // http://www.heatonresearch.com/content/choosing-best-c-array-type-

matrix-multiplication

 // ragged arrays perform better in C# than 2D arrays for matrix

multiplication

 float[][] A = CreateRaggedMatrix(N);

 float[][] B = CreateRaggedMatrix(N);

 FillRaggedMatrix(A, N, rand);

 FillRaggedMatrix(B, N, rand);

 // C++ doesn't need ragged arrays for performance, and it's easier to

marshall

 // and process the data as 2D arrays

 float[,] A2 = new float[N, N];

 float[,] B2 = new float[N, N];

 // for comparing results, use the same random data in C++ as in C#

 CopyRaggedMatrixTo2D(A, A2, N);

 CopyRaggedMatrixTo2D(B, B2, N);

 // warm-up AMP and get GPU name before timing

 var sb = new StringBuilder(256);

 CPPWrapper.WarmUpAMP(sb, sb.Capacity);

 TaskResults.AMPDeviceName = sb.ToString();

 //*** Basic C#. Save this original result for future comparisons.

 long start = DateTime.Now.Ticks;

 float[][] original = MatrixMultiplyBasic(A, B, N);

 long stop = DateTime.Now.Ticks;

 durations[0] = (stop - start) / 10000000.0;

 if (!RunCSharpAlgorithm(

 original,

 A,

 B,

 N,

 MatrixMultiplySerial,

 "C# Improved Serial",

 (int)Algorithms.CSharp_ImprovedSerial,

 TaskResults,

 ref durations))

 {

 return PartialView();

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 28 of 42

 }

 if (!RunCSharpAlgorithm(

 original,

 A,

 B,

 N,

 MatrixMultiplyTPL,

 "C# TPL",

 (int)Algorithms.CSharp_TPL,

 TaskResults,

 ref durations))

 {

 return PartialView();

 }

 if (!RunCPPAlgorithm(original, A2, B2, N, "C++ Basic",

 (int)Algorithms.CPP_Basic, TaskResults, ref durations))

 {

 return PartialView();

 }

 if (!RunCPPAlgorithm(original, A2, B2, N, "C++ PPL",

 (int)Algorithms.CPP_PPL, TaskResults, ref durations))

 {

 return PartialView();

 }

 if (!RunCPPAlgorithm(original, A2, B2, N, "C++ AMP",

 (int)Algorithms.CPP_AMP, TaskResults, ref durations))

 {

 return PartialView();

 }

 if (!RunCPPAlgorithm(original, A2, B2, N, "C++ AMP Tiling",

 (int)Algorithms.CPP_AMPTiling, TaskResults, ref durations))

 {

 return PartialView();

 }

 var slowest = durations.Max();

 var fastest = durations.Min();

 // populate the Model for the HTML table in the View

 for (int k = 0; k < NumAlgorithms; k++)

 {

 TaskResults.Time[k] = string.Format("{0:0.000}", durations[k]);

 TaskResults.RelativeSpeedLabel[k] = string.Format("{0:0.0}X", slowest

/ durations[k]);

 TaskResults.PercentOfMax[k] = (int)(fastest / durations[k] * 100.0);

 }

 return PartialView();

}

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 29 of 42

bool RunCSharpAlgorithm(

 float[][] original,

 float[][] A,

 float[][] B,

 int N,

 CSharpMatrixMultiply function,

 string FunctionName,

 int AlgorithmIndex,

 TaskResults results,

 ref double[] durations)

{

 double[] test_durations = new double[TESTLOOPS];

 for (int k = 0; k < TESTLOOPS; k++)

 {

 long start = DateTime.Now.Ticks;

 float[][] C = function(A, B, N);

 test_durations[k] = (DateTime.Now.Ticks - start) / 10000000.0;

 if (!CompareMatrixes(original, C, N))

 {

 results.StatusMessage = "Error verifying " + FunctionName;

 return false;

 }

 }

 durations[AlgorithmIndex] = test_durations.Average();

 return true;

}

unsafe bool RunCPPAlgorithm(

 float[][] original,

 float[,] A2,

 float[,] B2,

 int N,

 string FunctionName,

 int AlgorithmIndex,

 TaskResults results,

 ref double[] durations)

{

 double[] test_durations = new double[TESTLOOPS];

 for (int k = 0; k < TESTLOOPS; k++)

 {

 // allocate memory in C# to simplify marshalling/deallocation

 float[,] C2 = new float[N, N];

 long start = DateTime.Now.Ticks;

 fixed (float* pA2 = &A2[0, 0])

 fixed (float* pB2 = &B2[0, 0])

 fixed (float* pC2 = &C2[0, 0])

 {

 var error = new StringBuilder(1024); // allocate string memory

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 30 of 42

 if (!CPPWrapper.CallCPPMatrixMultiply(AlgorithmIndex,

 pA2, pB2, pC2, N, error, error.Capacity))

 {

 results.StatusMessage = error.ToString();

 return false;

 }

 }

 if (!CompareRaggedMatrixTo2D(original, C2, N))

 {

 results.StatusMessage = "Error verifying " + FunctionName;

 return false;

 }

 test_durations[k] = (DateTime.Now.Ticks - start) / 10000000.0;

 }

 durations[AlgorithmIndex] = test_durations.Average();

 return true;

}

// Standard algorithm

float[][] MatrixMultiplyBasic(float[][] A, float[][] B, int N)

{

 float[][] C = CreateRaggedMatrix(N); // C is the result matrix

 for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)

 C[i][j] += A[i][k] * B[k][j];

 return C;

}

// This function was developed by Heaton Research and is licensed under the

Apache License, Version 2.0,

// available here: https://www.apache.org/licenses/LICENSE-2.0.html

// Improve the basic serial algorithm with optimized index order

float[][] MatrixMultiplySerial(float[][] A, float[][] B, int N)

{

 float[][] C = CreateRaggedMatrix(N);

 // according to http://www.heatonresearch.com/content/choosing-best-c-

array-type-matrix-multiplication

 // this ikj index order performs the best for C# matrix multiplication

 for (int i = 0; i < N; i++)

 {

 float[] arowi = A[i];

 float[] crowi = C[i];

 for (int k = 0; k < N; k++)

 {

 float[] browk = B[k];

 float aik = arowi[k];

 for (int j = 0; j < N; j++)

 {

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 31 of 42

 crowi[j] += aik * browk[j];

 }

 }

 }

 return C;

}

// Parallel algorithm using TPL

float[][] MatrixMultiplyTPL(float[][] A, float[][] B, int N)

{

 float[][] C = CreateRaggedMatrix(N);

 Parallel.For(0, N, i =>

 {

 float[] arowi = A[i];

 float[] crowi = C[i];

 for (int k = 0; k < N; k++)

 {

 float[] browk = B[k];

 float aik = arowi[k];

 for (int j = 0; j < N; j++)

 {

 crowi[j] += aik * browk[j];

 }

 }

 });

 return C;

}

C# Basic Serial (CPU)
A basic algorithm for matrix multiplication is used as the baseline for the

algorithms in subsequent sections. There is only one optimization applied in this

basic algorithm. When using two-dimensional arrays in the .NET Framework,

method calls would ordinarily be made to the Array class. Since the inner loop

executes so many times, that’s expensive. But there is a simple workaround: use

ragged arrays. For example, instead of declaring a 10x20 array like this:

double[,] MyArray = new double[10,20];

declare it like this, and create each row as a separate array of 20 columns in a for

loop:

double[][] MyArray = new double[10][];

for (int i = 0; i < 10; i++)

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 32 of 42

MyArray[i] = new double[20];

Here is the code for basic matrix multiplication. This will execute in serial fashion

on the CPU:

float[][] MatrixMultiplyBasic(float[][] A, float[][] B, int N)

{

 float[][] C = CreateRaggedMatrix(N); // C is the result matrix

 for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)

 C[i][j] += A[i][k] * B[k][j];

 return C;

}

C# Optimized Serial (CPU)
The code for this algorithm was obtained from the article Choosing the Best C#

Array Type for Matrix Multiplication16 By Heaton Research. In the article, the

author writes several variations of the order of the for loop indexes, and

measures the timing of each. For this whitepaper, we are using the variation that

was found to perform the best with the .NET Framework 4.5.

float[][] MatrixMultiplySerial(float[][] A, float[][] B, int N)

{

 float[][] C = CreateRaggedMatrix(N);

 // according to http://www.heatonresearch.com/content/choosing-best-c-

array-type-matrix-multiplication

 // this ikj index order performs the best for C# matrix multiplication

 for (int i = 0; i < N; i++)

 {

 float[] arowi = A[i];

 float[] crowi = C[i];

 for (int k = 0; k < N; k++)

 {

 float[] browk = B[k];

 float aik = arowi[k];

 for (int j = 0; j < N; j++)

http://www.heatonresearch.com/content/choosing-best-c-array-type-matrix-multiplication
http://www.heatonresearch.com/content/choosing-best-c-array-type-matrix-multiplication

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 33 of 42

 {

 crowi[j] += aik * browk[j];

 }

 }

 }

 return C;

}

C# Parallel with TPL (CPU)
The following code simply replaces the standard outer loop in the previous

algorithm with a Parallel.For loop from the .NET Framework Task Parallel

Library (TPL). For more information, see Matrix Multiplication in Parallel with

C# and the TPL17 by James D. McCaffrey.

float[][] MatrixMultiplyTPL(float[][] A, float[][] B, int N)

{

 float[][] C = CreateRaggedMatrix(N);

 Parallel.For(0, N, i =>

 {

 float[] arowi = A[i];

 float[] crowi = C[i];

 for (int k = 0; k < N; k++)

 {

 float[] browk = B[k];

 float aik = arowi[k];

 for (int j = 0; j < N; j++)

 {

 crowi[j] += aik * browk[j];

 }

 }

 });

 return C;

}

C++ Basic Serial (CPU)
If you decide to build your own program, you must follow the steps in the blog

post How to use C++ AMP from C#18 on the Parallel Programming with .NET

http://jamesmccaffrey.wordpress.com/2012/04/22/matrix-multiplication-in-parallel-with-c-and-the-tpl/
http://jamesmccaffrey.wordpress.com/2012/04/22/matrix-multiplication-in-parallel-with-c-and-the-tpl/
http://blogs.msdn.com/b/pfxteam/archive/2011/09/21/10214538.aspxhttp:/blogs.msdn.com/b/pfxteam/archive/2011/09/21/10214538.aspx

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 34 of 42

blog on MSDN. If you only want to download and run the sample code provided

with this whitepaper, there is no need to follow that procedure, because those

steps have already been included in the Visual Studio solution.

One difference between our solution and the information in the blog post is that

our solution uses all 64-bit code. When combining C# and C++, you need to be

careful to use the same platform in each language. The platform is usually set to

Any CPU in C#, but it must be changed to x64 in the Visual Studio

Configuration Manager, as shown in Figure 18.

Figure 18: Setting the Platform to x64 in the Visual Studio Configuration Manager

See the blog post Debugging VS2013 websites using 64-bit IIS Express19 for

additional helpful information.

Before you can invoke C++ functions from C#, you need to declare them for

P/Invoke on the C# side. The following code shows the CPPWrapper class in

the Controller folder in the Visual Studio solution. As required, these methods are

declared with the unsafe keyword in C#. Rather than create a public entry point

for each C++ algorithm, it was deemed a bit cleaner to create a single function to

call each one based on the algorithm index passed in. This simplifies the

exception handling which had to be written in C++. I would have liked to write a

single exception handler in C# for all the calls to the different algorithms,

http://blogs.msdn.com/b/rob/archive/2013/11/14/debugging-vs2013-websites-using-64-bit-iis-express.aspx

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 35 of 42

including C++, but it was necessary to write an error handler in C++ for the error

codes that can be returned by C++ AMP.

public class CPPWrapper

{

 [DllImport("CPPMatrixMultiply.dll",

 CallingConvention = CallingConvention.StdCall,

 CharSet = CharSet.Unicode)]

 public extern unsafe static bool

 CallCPPMatrixMultiply(int algorithm, float* A, float* B, float* C,

 int N, StringBuilder error, int errsize);

 [DllImport("CPPMatrixMultiply.dll",

 CallingConvention = CallingConvention.StdCall,

 CharSet = CharSet.Unicode)]

 public extern unsafe static void WarmUpAMP(StringBuilder buffer, int

bufsize);

}

Here is the C++ dispatcher function, which is exported for C#:

extern "C" __declspec (dllexport) bool _stdcall

CallCPPMatrixMultiply(int algorithm, float A[], float B[], float C[],

 int N, wchar_t* error, size_t errsize)

{

 try

 {

 switch (algorithm)

 {

 case Algorithms::CPP_Basic:

 MatrixMultiplyBasic(A, B, C, N); break;

 case Algorithms::CPP_PPL:

 MatrixMultiplyPPL(A, B, C, N); break;

 case Algorithms::CPP_AMP:

 MatrixMultiplyAMP(A, B, C, N); break;

 case Algorithms::CPP_AMPTiling:

 MatrixMultiplyTiling(A, B, C, N); break;

 default:

 wcscpy_s(error, errsize, L"Invalid C++ algorithm index.");

 return false;

 }

 }

 catch (concurrency::runtime_exception& ex)

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 36 of 42

 {

 std::wstring result = stows(ex.what());

 wcscpy_s(error, errsize, result.c_str());

 return false;

 }

 return true;

}

Now that you’ve taken care of those preliminaries, you’re ready to implement the

C++ function for basic matrix multiplication. It looks very similar to the basic

algorithm in C# except that it doesn’t use ragged arrays, and it introduces a

temporary sum variable to reduce array references to the result array in the inner

loop.

void MatrixMultiplyBasic(float A[], float B[], float C[], int N)

{

 for (int i = 0; i < N; i++)

 {

 for (int j = 0; j < N; j++)

 {

float sum = 0.0;

for (int k = 0; k < N; k++)

{

 sum += A[i*N + k] * B[k*N + j];

}

C[i*N + j] = sum;

 }

 }

}

C++ Parallel with PPL (CPU)
The next optimization is to rewrite the serial C++ function as a parallel function.

This code will still be running on the CPU, but it will give us an interesting

comparison with the parallel code we’ll write later to run on the GPU.

In the past, writing parallel code in Windows with the Win32 thread APIs was

complicated. There are still many difficulties in multithreaded programming, but

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 37 of 42

now the Microsoft Parallel Patterns Library (PPL) makes it much easier. For

more information about PPL, see the following:

 This article in the MSDN Library explains a parallel matrix multiplication

algorithm written in C++ using PPL: How to: Write a parallel_for Loop20

 This article describes several optimization techniques for writing parallel

for loops in C++: C++11: Multi-core Programming – PPL Parallel

Aggregation Explained.21

Here’s the non-optimized parallel C++ function:

void MatrixMultiplyPPL(float A[], float B[], float C[], int N)

{

 parallel_for(0, N, [&](int i)

 {

 for (int j = 0; j < N; j++)

 {

float sum = 0.0;

for (int k = 0; k < N; k++)

 {

 sum += A[i*N + k] * B[k*N + j];

 }

 C[i*N + j] = sum;

 }

 });

}

C++ Parallel with AMP (GPU)
Now you’re ready to write AMP code. To get started, you may want to review the

blog post How to measure the performance of C++ AMP alglorithms22 on the

Parallel Programming in Native Code blog on MSDN. As that author points out,

there is overhead when AMP initializes itself on first use. It enumerates the GPU

devices in the system and picks the default one. The idea of warming up AMP

before timing it may or may not apply to your use case, but the code provided

with this whitepaper does implement such a function. The following function

returns the name of the GPU device so it can be displayed in the ASP.NET MVC

web page.

// Return the name of the default GPU device (or the emulator if no GPU

exists).

http://msdn.microsoft.com/en-us/library/dd728073.aspx
https://katyscode.wordpress.com/2013/08/17/c11-multi-core-programming-ppl-parallel-aggregation-explained/
https://katyscode.wordpress.com/2013/08/17/c11-multi-core-programming-ppl-parallel-aggregation-explained/
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/12/28/how-to-measure-the-performance-of-c-amp-algorithms.aspx

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 38 of 42

// AMP will enumerate devices to initialize itself outside of the timing

code.

extern "C" __declspec (dllexport) void _stdcall

WarmUpAMP(wchar_t* buffer, size_t bufsize)

{

 accelerator default_device;

 wcscpy_s(buffer, bufsize, default_device.get_description().c_str());

}

String types in C# and C++ are not directly compatible, but there are various

ways to pass strings between them (this is called marshaling). In all cases, it’s

important to pay attention to where the string memory is allocated and how it

will be freed. The P/Invoke declaration in C# must be carefully written to match

the string-passing technique you decide to use in C++. The technique used in the

previous code is to allocate a StringBuilder object with a fixed capacity in C#

before passing it into C++. That way, the C# side is responsible for freeing the

memory when the object goes out of scope, which only happens after the C++

function is done writing to the memory. The C++ code just copies the name of the

GPU device into the buffer passed in from C#.

The next task is to adapt the parallel C++ matrix multiplication algorithm to use

AMP. The following AMP code is based on the Matrix Multiplication Sample23 on

the Parallel Programming in Native Code blog on MSDN.

void MatrixMultiplyAMP(float A[], float B[], float C[], int N)

{

 extent<2> e_a(N, N), e_b(N, N), e_c(N, N);

 array_view<float, 2> a(e_a, A);

 array_view<float, 2> b(e_b, B);

 array_view<float, 2> c(e_c, C);

 c.discard_data(); // avoid copying memory to GPU

 parallel_for_each(c.extent, [=](index<2> idx) restrict(amp)

 {

 int row = idx[0];

 int col = idx[1];

 float sum = 0;

 for (int inner = 0; inner < N; inner++)

 {

http://blogs.msdn.com/b/nativeconcurrency/archive/2011/11/02/matrix-multiplication-sample.aspx

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 39 of 42

 index<2> idx_a(idx[0], inner);

 index<2> idx_b(inner, idx[1]);

 sum += a[idx_a] * b[idx_b];

 }

 c[idx] = sum;

 });

 c.synchronize();

}

C++ Parallel with AMP Tiling (GPU)
Finally, let’s take another step with the AMP code to use a technique called tiling.

In a nutshell, tiling is a method of optimizing the way the algorithm uses memory

in the GPU. When you call C++ AMP from C#, there are four levels of memory

you should be aware of:

 Managed memory. This lives in RAM associated with the CPU and the

.NET Framework CLR managed process, and is controlled by the .NET

Framework garbage collector. Data passed between C# and C++ must be

“marshaled” between managed and unmanaged memory according to very

particular rules, such as padding.

 Unmanaged memory. This also lives in RAM associated with the CPU,

but this memory space requires Win32 memory APIs and does not include

a garbage collector.

 Global memory on the GPU. Programming in AMP requires that data

be moved—with thread synchronization—between unmanaged memory

and the GPU.

 Registers associated with each thread on the GPU. Accessing data

in these registers can be 1000 times faster than GPU global memory, so the

idea is to move frequently accessed data into the registers. But the registers

aren’t large enough to hold an entire matrix, so algorithms must be written

to process one “tile” at a time and then move another tile into the registers,

and so on. A full explanation of tiling is beyond the scope of this

whitepaper, but this article by Daniel Moth covers it well.24

Here is the C++ AMP code with a tiling algorithm:

http://msdn.microsoft.com/en-us/magazine/hh882447.aspx

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 40 of 42

const int TILESIZE = 8; // array size passed in must be a multiple of

TILESIZE

void MatrixMultiplyTiling(float A[], float B[], float C[], int N)

{

 assert((N % TILESIZE) == 0);

 array_view<const float, 2> a(N, N, A);

 array_view<const float, 2> b(N, N, B);

 array_view<float, 2> c(N, N, C);

 c.discard_data();

 parallel_for_each(c.extent.tile<TILESIZE, TILESIZE>(),

 [=](tiled_index<TILESIZE, TILESIZE> t_idx) restrict(amp)

 {

 int row = t_idx.local[0];

 int col = t_idx.local[1];

 tile_static float locA[TILESIZE][TILESIZE];

 tile_static float locB[TILESIZE][TILESIZE];

 float sum = 0;

 for (int i = 0; i < a.extent[1]; i += TILESIZE)

 {

 locA[row][col] = a(t_idx.global[0], col + i);

 locB[row][col] = b(row + i, t_idx.global[1]);

 t_idx.barrier.wait();

 for (int k = 0; k < TILESIZE; k++)

 sum += locA[row][k] * locB[k][col];

 t_idx.barrier.wait();

 }

 c[t_idx.global] = sum;

 });

 c.synchronize();

}

Conclusion
This whitepaper demonstrated how to set up the G2 instance type in Amazon

EC2 with Windows Server. The NVIDIA GPU on those instances provides 1,536

cores that developers can use for compute-intensive application functions. But

programming the GPU requires the C or C++ language, whereas most Windows

developers are using C#. This article showed how to pass data between C# and

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 41 of 42

C++, and how to use the C++ AMP library to make GPU programming accessible

and highly productive for C# web developers on Windows.

The tiled matrix multiplication algorithm written in C++ AMP was hundreds of

times faster than the basic algorithm written in C#.

Further Reading
 AWS Toolkit for Visual Studio25

 AWS for Windows and .NET Developer Center26

 Getting Started with Amazon EC2 Windows Instances27

 Elastic Beanstalk Documentation28

 C++ AMP documentation29

 ASP.NET MVC documentation30

Notes

1 http://d0.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip

2 https://bitbucket.org/multicoreware/cppamp-driver-ng/overview

3 https://ampalgorithms.codeplex.com/documentation

4 http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-

sample-projects-for-download.aspx

5 http://aws.amazon.com/ec2/instance-types/

6 http://www.nvidia.com/object/cuda_home_new.html

7 http://aws.amazon.com/visualstudio/

8 http://aws.amazon.com/free/

9 http://www.microsoft.com/en-us/download/details.aspx?id=40784

10 http://www.realvnc.com/

11 http://www.realvnc.com/

12 http://www.NVIDIA.com/download/driverResults.aspx/74642/en-us

13 http://d0.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip

http://aws.amazon.com/visualstudio/
http://aws.amazon.com/net/
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-windows-ec2.html
http://msdn.microsoft.com/en-us/library/hh265137.aspx
http://www.asp.net/mvc
http://d0.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip
https://bitbucket.org/multicoreware/cppamp-driver-ng/overview
https://ampalgorithms.codeplex.com/documentation
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://aws.amazon.com/ec2/instance-types/
http://www.nvidia.com/object/cuda_home_new.html
http://aws.amazon.com/visualstudio/
http://aws.amazon.com/free/
http://www.microsoft.com/en-us/download/details.aspx?id=40784
http://www.realvnc.com/
http://www.realvnc.com/
http://www.nvidia.com/download/driverResults.aspx/74642/en-us
http://d0.awsstatic.com/whitepapers/CSharpMatrixMultiply.zip

Amazon Web Services – Optimizing ASP.NET with C++ AMP on the GPU April 2015

Page 42 of 42

14 http://blogs.aws.amazon.com/net/post/Tx1RLX98N5ERPSA/Customizing-

Windows-Elastic-Beanstalk-Environments-Part-1

15 http://blogs.aws.amazon.com/net/post/Tx2EMAYCXUW3HAK/Customizing-

Windows-Elastic-Beanstalk-Environments-Part-2

16 http://www.heatonresearch.com/content/choosing-best-c-array-type-matrix-

multiplication

17 http://jamesmccaffrey.wordpress.com/2012/04/22/matrix-multiplication-in-

parallel-with-c-and-the-tpl/

18 http://blogs.msdn.com/b/pfxteam/archive/2011/09/21/10214538.aspx

19 http://blogs.msdn.com/b/rob/archive/2013/11/14/debugging-vs2013-

websites-using-64-bit-iis-express.aspx

20 http://msdn.microsoft.com/en-us/library/dd728073.aspx

21 https://katyscode.wordpress.com/2013/08/17/c11-multi-core-programming-

ppl-parallel-aggregation-explained/

22 http://blogs.msdn.com/b/nativeconcurrency/archive/2011/12/28/how-to-

measure-the-performance-of-c-amp-algorithms.aspx

23 http://blogs.msdn.com/b/nativeconcurrency/archive/2011/11/02/matrix-

multiplication-sample.aspx

24 http://msdn.microsoft.com/en-us/magazine/hh882447.aspx

25 http://aws.amazon.com/visualstudio/

26 http://aws.amazon.com/net/

27

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetSt

arted.html

28 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-

containers-windows-ec2.html

29 http://msdn.microsoft.com/en-us/library/hh265137.aspx

30 http://www.asp.net/mvc

http://blogs.aws.amazon.com/net/post/Tx1RLX98N5ERPSA/Customizing-Windows-Elastic-Beanstalk-Environments-Part-1
http://blogs.aws.amazon.com/net/post/Tx1RLX98N5ERPSA/Customizing-Windows-Elastic-Beanstalk-Environments-Part-1
http://blogs.aws.amazon.com/net/post/Tx2EMAYCXUW3HAK/Customizing-Windows-Elastic-Beanstalk-Environments-Part-2
http://blogs.aws.amazon.com/net/post/Tx2EMAYCXUW3HAK/Customizing-Windows-Elastic-Beanstalk-Environments-Part-2
http://www.heatonresearch.com/content/choosing-best-c-array-type-matrix-multiplication
http://www.heatonresearch.com/content/choosing-best-c-array-type-matrix-multiplication
http://jamesmccaffrey.wordpress.com/2012/04/22/matrix-multiplication-in-parallel-with-c-and-the-tpl/
http://jamesmccaffrey.wordpress.com/2012/04/22/matrix-multiplication-in-parallel-with-c-and-the-tpl/
http://blogs.msdn.com/b/pfxteam/archive/2011/09/21/10214538.aspx
http://blogs.msdn.com/b/rob/archive/2013/11/14/debugging-vs2013-websites-using-64-bit-iis-express.aspx
http://blogs.msdn.com/b/rob/archive/2013/11/14/debugging-vs2013-websites-using-64-bit-iis-express.aspx
http://msdn.microsoft.com/en-us/library/dd728073.aspx
https://katyscode.wordpress.com/2013/08/17/c11-multi-core-programming-ppl-parallel-aggregation-explained/
https://katyscode.wordpress.com/2013/08/17/c11-multi-core-programming-ppl-parallel-aggregation-explained/
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/12/28/how-to-measure-the-performance-of-c-amp-algorithms.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/12/28/how-to-measure-the-performance-of-c-amp-algorithms.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/11/02/matrix-multiplication-sample.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2011/11/02/matrix-multiplication-sample.aspx
http://msdn.microsoft.com/en-us/magazine/hh882447.aspx
http://aws.amazon.com/visualstudio/
http://aws.amazon.com/net/
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-windows-ec2.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-windows-ec2.html
http://msdn.microsoft.com/en-us/library/hh265137.aspx
http://www.asp.net/mvc

