
Managing Multi-Tiered Applications
with AWS OpsWorks

Daniele Stroppa

January 2015

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 2 of 19

Contents
Contents 2	

Abstract 2	

Introduction 3	

Key Concepts 3	

Design 5	

Micro-services Architecture 5	

Provisioning and Deployment 6	

Managing Multiple Environments with AWS CloudFormation Templates 6	

Continuous Integration, Continuous Delivery, Deployment Pipelines, and Continuous
Deployment 7	

Zero Downtime Deployments 8	

Blue-Green Deployments 9	

Monitoring 10	

Amazon CloudWatch 10	

Ganglia Built-in Layer and Custom Layers 12	

Security 13	

Amazon Virtual Private Cloud 13	

Managing Access to the Instances 14	

Managing Secrets 15	

Conclusion 19	

Further Reading 19	

Abstract
An application usually requires a set of resources—such as a load balancer, web and
application servers, and a database server—that you must create and manage as a
whole. Additionally, you must deploy your application to the application servers, manage
security and resource permissions, and monitor the performance of the solution.

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 3 of 19

This paper details how to use AWS OpsWorks to manage applications and their related
resources and offers guidance to help deliver these solutions.

Introduction
AWS OpsWorks provides a flexible way to create and manage resources for your
applications. It supports standard components such as application servers, database
servers, and load balancers, as well as custom components such as search tools and
messaging systems. AWS OpsWorks also provides tools to customize the standard
package configurations, install additional packages, automate runbooks, and manage
users’ OS-level permissions.

Key Concepts
Before you get started using AWS OpsWorks, it’s helpful to understand some key
concepts.

Stack
A stack is a set of AWS resources that are managed together—for example, Amazon
EC2 instances, Amazon EBS volumes, and Elastic Load Balancing load balancers. AWS
OpsWorks helps you manage these resources as a whole and also defines some default
configuration settings. You can create separate stacks for different environments—e.g.,
one stack for QA/testing and one for production—and for different applications.

Layer
Each stack contains one or more layers. A layer specifies how to configure a set of
Amazon EC2 instances for a specific purpose such as hosting a web server.

AWS OpsWorks provides a set of built-in layers that support a variety of standard
packages, including application servers such as Tomcat and Node.js, MySQL and
Amazon RDS database servers, Elastic Load Balancing and HAProxy load balancers,
and so on. AWS OpsWorks allows you to customize or extend the built-in layers by
modifying default configurations and adding custom Chef recipes. You can also create a
fully custom layer, which gives you complete control over the layer configuration and
setup.

App
You represent your application within AWS OpsWorks by defining an app, which
specifies the application type and contains the information needed to deploy the
application from its repository to your application server instances. When deploying an
app, AWS OpsWorks runs the Deploy recipes on all of the stack's instances, which
allows instances such as database servers to modify their configuration as appropriate.
AWS OpsWorks supports the ability to deploy multiple apps per stack and per layer.

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 4 of 19

Life Cycle Events
Each layer within an AWS OpsWorks stack has a set of life cycle events that correspond
to different stages in an instance's life cycle, such as setup or app deployment. Each life
cycle event has an associated set of Chef recipes that are executed on each of the
layer's instances to perform the required tasks. AWS OpsWorks provides built-in recipes
to perform basic management, and you can add custom recipes to any life cycle event to
script any configuration change that your application needs.

Setup
Once a new instance has booted, AWS OpsWorks triggers the Setup event, which runs
recipes to set up the instance according to the layer configuration. For example, if the
instance is part of the PHP App Server layer, the Setup recipes install the Apache and
PHP packages. Once setup is complete, AWS OpsWorks triggers a Deploy event, which
runs recipes to deploy your application to the new instance.

Configure
Whenever an instance enters or leaves the online state, AWS OpsWorks triggers a
Configure event on all instances in the stack. The event runs each layer's configure
recipes to update the configuration to reflect the current set of online instances. For
example, the HAProxy layer's Configure recipes modify the load balancer configuration
to reflect any added or removed application server instances.

Deploy
AWS OpsWorks triggers a Deploy event when you run a Deploy command, typically to
deploy your application to a set of application servers. The event runs recipes on the
application servers to deploy the application and any related files from its repository to
the layer's instances. You can trigger Deploy on other instances so they can, for
example, update their configuration to accommodate the newly deployed app.

Undeploy
AWS OpsWorks triggers an Undeploy event when you delete an app or run an Undeploy
command to remove an app from a set of application servers. The event runs recipes to
remove all application versions and perform any additional cleanup tasks.

Shutdown
AWS OpsWorks triggers a Shutdown event when an instance is being shut down, but
before the underlying Amazon EC2 instance is actually terminated. The event runs
recipes to perform cleanup tasks such as shutting down services. AWS OpsWorks
allows Shutdown recipes a configurable amount of time to perform their tasks, and then
terminates the instance.

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 5 of 19

Design
An application is typically built using multiple tiers:

• Presentation – typically a front-end web server that serves static content, and
potentially some cached dynamic content.

• Business logic – an application server where dynamic content is processed and
generated.

• Workers – a set of servers that run background and long-running tasks.

• Data – usually a back-end database or data store.

• Integration – typically services to link the other layers together, e.g., messaging
queues and topics.

AWS OpsWorks lets you model each tier with a layer that defines how to configure the
tier's resources. You can also associate multiple layers with a single instance, for
example if you need to configure an administrative web server for a group of web
servers.

Micro-services Architecture
The micro-services architecture is a design approach to build a single application as a
set of small services. Each service runs in its own process and communicates with other
services via a well-defined interface using a lightweight mechanism, typically HTTP-
based application programming interface (API). Micro-services are built around business
capabilities, and each service performs a single function. Micro-services can be written
using different frameworks or programming languages, and you can deploy them
independently, as a single service, or as a group of services.

Figure 1: An example of an application architecture using micro-services

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 6 of 19

Micro-services can be modeled in AWS OpsWorks, with each micro-service being
represented by a separate layer. Each layer can be configured independently using
different recipes and each layer holds a set of instances. Application deployment can be
done to a single instance, to all the instances in a particular layer – i.e., per micro-
service – or to the instances in multiple layers at the same time.

Another approach to micro-service architectures is to use containers, such as Docker.
Docker is an open-source platform that lets you build, deliver, and deploy distributed
applications in lightweight execution environments called containers. These containers
can scale according to business needs.

Docker's default container, libcontainer, enables image management and deployment
services by using Linux kernel features such as:

• cgroups for resource isolation

• Namespaces to isolate the application's view of the operating environment

• Apparmor profiles to restrict the application’s capabilities

• Networking interfaces to provide network connectivity

• Firewall rules to provide an isolated environment for applications.

Containers can share the same kernel, but each container can be limited to use only a
specified amount of resources such as CPU, memory, and I/O.

Docker enables developers to create distributed systems easily by running multiple
applications independently on a single machine. New resources are deployed as
needed, enabling each micro-service to scale autonomously. The AWS Application
Management Blog shows how to run your Docker containers with AWS OpsWorks.

Provisioning and Deployment
You should manage automated infrastructure provisioning like any other source code, by
using a version control system. Provisioning resources, configuring software, and
deploying applications should be deterministic, repeatable, flexible, and predictable.
AWS OpsWorks, together with other AWS services such as AWS CloudFormation,
enables you to provision the infrastructure needed to run your application and to manage
continuous deployment of your application.

Managing Multiple Environments with
AWS CloudFormation Templates
You can use AWS CloudFormation templates to model your AWS OpsWorks
components—stacks, layers, instances, and applications—and provision them as AWS

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 7 of 19

CloudFormation stacks. This gives you the ability to track changes in your infrastructure
using a version control tool and to share your AWS OpsWorks configuration.
Additionally, you have the flexibility to create related services and resources, such as
Elastic Load Balancing and Amazon RDS databases, alongside your AWS OpsWorks
components using a single AWS CloudFormation template or nested AWS
CloudFormation templates. These sample templates show how to model your AWS
OpsWorks stack using AWS CloudFormation.

Using an AWS CloudFormation template, you’ll be able to create multiple identical
stacks, one for each deployment environment, e.g., test and production. In this way, you
can make sure your application is being tested in an environment that is identical to the
production environment. You can also define parameters in your AWS CloudFormation
template, so that you’ll be able to customize and differentiate stacks for different
environments.

Continuous Integration, Continuous Delivery,
Deployment Pipelines, and Continuous Deployment
With continuous integration, members of a development team integrate their work
frequently, typically on a daily basis. Each integration is built and then tested to detect
errors as quickly as possible.

With continuous delivery, you build software so that it can be released to production at
any time. The code is deployable throughout its life cycle, which gives you fast and
automated feedback on your systems' production readiness. You achieve continuous
delivery by continuously integrating your code, building packages, and running
automated tests to detect problems. You then deploy those packages into an
environment as close as possible to your production environment using a deployment
pipeline.

A deployment pipeline allows you to break up your build process into stages, with each
stage giving you increased confidence in your build. Usually the first stage of a
deployment pipeline compiles the code and provides packages for later stages. The final
stage deploys the packages to production. The transition between stages can be
automatic or require human authorization. You can usually detect build problems during
the early stages of your pipeline, providing faster feedback and allowing you to terminate
the process at that point. During later stages, troubleshooting requires thorough analysis
and greater time.

You can also treat your pipeline as a single transaction: once a build is started, it’s either
successful and deployed to a production environment, or all changes in every stage are
rolled back. This allows you to keep all your environments consistent at all times.

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 8 of 19

Figure 2 – An example of a deployment pipeline

Continuous deployment builds on continuous delivery concepts. With continuous
delivery, the pipeline doesn't necessarily deploy code to production; you choose whether
to deploy. With continuous deployment, every change that successfully goes through the
pipeline is automatically deployed to production, typically resulting in multiple
deployments per day.

Throughout the stages of your deployment pipeline, you’ll need to deploy your code
multiple times to different environments. There are different deployment methods:

• Bake a custom image, such as an Amazon Machine Images (AMI) or Docker
container, that includes all required packages and configurations. Using baked
images, you can provide consistent images for your environments, and you will allow
for a quicker instance boot time. You can automate the baking process using tools
such as Netflix Aminator, to create custom AMIs, or Packer, which also allows you to
bake Docker images. Here you can find an example of a Packer template that you
can use to bake an AMI.

• Deploy in place, meaning that you start your instances using a base AMI and then
install all the packages and make the required configuration using Chef recipes. This
can slow down the instance boot time, but it gives you more flexibility when
configuring your environments.

You can choose to implement either of these methods or use a combination of both:
bake a custom AMI with the packages and configurations that change less frequently
and use Chef recipes to configure the more dynamic components.

Zero Downtime Deployments
When you are deploying multiple times a day to your production environment, you want
to do so without causing any downtime for your application. During the AWS re:Invent
2014 session “Scalable Site Management Using AWS OpsWorks” we introduced a script
that simplifies and automates zero downtime deployments with AWS OpsWorks.

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 9 of 19

The script uses the AWS SDK for Python to make calls to the AWS OpsWorks API.
Upon execution, the script loops through the instances in an AWS OpsWorks layer and
issues the deployment command to each one of them. If the layer is associated with an
Elastic Load Balancing load balancer, the script will first deregister the instance from the
load balancer, wait for the connection draining timeout setting, and then initiate the
deployment. Once the deployment is complete, it will re-register the instance with the
Elastic Load Balancing load balancer. The script will also read the load balancer health
check configuration and wait for the instance to be considered healthy—i.e., healthy
threshold times health check interval—before putting it back online.

Blue-Green Deployments
Blue-Green deployments are an efficient way for reducing deployment risk. The existing
live production environment is referred to as blue, while the environment used to test a
new version of your application is referred to as green. Once the new version has been
successfully tested and is ready to go live, you can switch all user traffic from the blue
environment to the green environment. The blue environment can be left idle and
removed after a certain amount of time if no rollback is required.

You can implement blue-green deployments using AWS OpsWorks in combination with
a pool of Elastic Load Balancing load balancers and Amazon Route 53.

• Both blue and green environments are represented by AWS OpsWorks stacks. The
blue environment is running the current version while the green environment is
running the new version. In combination with AWS CloudFormation each stack can
have changes to software and resource configuration. Initially instances receive
traffic only in the blue stack.

• Create a pool of Elastic Load Balancing load balancers that can be dynamically
attached to a layer in either stack and that can be pre-warmed to cope with the
expected volume of traffic.

• Use the weighted routing feature provided by Amazon Route 53 to create a record
set in a hosted zone that includes all your pooled load balancers. Assign a zero
weight to all load balancers not being used, and assign a nonzero weight to the load
balancer attached to your live environment.

When you are ready for a blue-green switch:

• Create a green AWS OpsWorks stack identical to the existing blue stack; you can
clone the blue stack or use an AWS CloudFormation template. Once the green stack
is created, start instances in the required layers and deploy the new version of your
application.

• Attach an Elastic Load Balancing load balancer from the pool to the application layer
in the green stack.

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 10 of 19

• Once the new instances appear as healthy in the Elastic Load Balancing load
balancer, change the weights in the Amazon Route 53 record set so that the load
balancer attached to the green environment gets a nonzero weight, while the load
balancer attached to the blue environment gets a zero weight.

• Detach the Elastic Load Balancing load balancer from the application layer in the
blue stack so it can go back in the pool.

• Once there’s no more need to keep the blue stack—i.e., once a rollback is not
required—remove the stack.

Monitoring
Monitoring your resources is considered a best practice and enables organizations to
identify and resolve infrastructure and application problems before they affect critical
business processes.

AWS OpsWorks allows you to monitor your stacks and applications via Amazon
CloudWatch—which provides metrics such as load, CPU, and memory—or with third-
party tools such as Ganglia or Nagios.

Amazon CloudWatch
AWS OpsWorks uses Amazon CloudWatch to provide custom metrics with detailed
monitoring for each instance in the stack and presents the aggregate data in each
stack's monitoring section. You can view metrics for the entire stack or for a particular
layer, or you can drill down to a specific instance.

You can also define custom metrics and publish them to Amazon CloudWatch with the
put-metric-data command. Amazon CloudWatch stores metric data as a series of data
points, each with an associated time stamp. You can publish one or more data points
with each call to put-metric-data, and you can also publish an aggregated set of
data points, known as a statistics set. Once your metrics have been published to
Amazon CloudWatch, you can view the graphs of your metric in the AWS Management
Console.

To publish your custom metric to Amazon CloudWatch from an AWS OpsWorks stack,
you would typically write a custom recipe to create a cron job to publish your custom
metrics using the AWS Command Line Interface (CLI) commands, the Amazon
CloudWatch monitoring scripts for Linux or any of the available AWS SDKs. The
following example shows a custom recipe that publishes disk space custom metrics
using the Amazon CloudWatch monitoring scripts. The cron resource creates a cron job
to run the script every five minutes:

Install Perl dependecies

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 11 of 19

if platform?("ubuntu")
 package "unzip"
 package "libwww-perl"
 package "libcrypt-ssleay-perl"
 package "libswitch-perl"
elsif platform?("amazon")
 package "perl-Switch"
 package "perl-Sys-Syslog"
 package "perl-LWP-Protocol-https"
end

Download the Amazon CloudWatch Monitoring Scripts for
Linux

remote_file "/opt/CloudWatchMonitoringScripts-v1.1.0.zip"
do
 source "http://ec2-downloads.s3.amazonaws.com/cloudwatch-
samples/CloudWatchMonitoringScripts-v1.1.0.zip"
 mode '0644'
end

Unzip the Amazon CloudWatch Monitoring Scripts for Linux

execute "unzip" do
 command "unzip CloudWatchMonitoringScripts-v1.1.0.zip"
 creates "/opt/aws-scripts-mon"
 cwd "/opt"
end

Add the script to cron so that it runs every 5 minutes

cron "cloudwatch-disk-space" do
 hour "*"
 minute "*/5"
 weekday "*"
 command "/opt/aws-scripts-mon/mon-put-instance-data.pl --
disk-space-used --disk-space-avail --disk-space-util --
disk-path=/ --from-cron"
end

Note that the Amazon EC2 instances in the AWS OpsWorks stack will need to have an
AWS Identity and Access Management (IAM) role with a policy that allows the
cloudwatch:PutMetric* actions.

Use Amazon CloudWatch to Monitor Stack Logs
Each instance in your stack will produce different log files, such as system logs,
application logs, and perhaps custom logs. You probably would want to monitor some of

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 12 of 19

these logs to detect unexpected behavior or errors—e.g., when an application server is
generating more 404 HTTP status codes than expected. AWS OpsWorks supports
Amazon CloudWatch Logs to enable monitoring selected logs on multiple instances,

With Amazon CloudWatch Logs, you can monitor a log for the occurrence of a specific
pattern. For example, you can monitor your application logs for the occurrence of a literal
term such as ERROR. The Amazon CloudWatch Logs agent will send the logs to
Amazon CloudWatch Logs, and you can then use the Amazon CloudWatch Logs
console or the CLI to configure metrics to send you a notification when a certain
condition is met, e.g., when the number of errors in the log exceeds a specified
threshold.

To enable Amazon CloudWatch Logs monitoring on your AWS OpsWorks stack, you
must follow these steps:

• Update your instance profile so that the Amazon CloudWatch Logs agent has the
right permissions. You can use the same updated profile for all your instances.

• Create a configuration file that specifies details such as which logs to monitor, and
install it in each instance's /tmp directory.

• Install and start the Amazon CloudWatch Logs agent on each instance.

You can automate the last two steps using custom recipes to handle the required tasks
and assigning them to the appropriate layer's Setup events. Each time you start a new
instance on those layers, AWS OpsWorks automatically runs your recipes after the
instance finishes booting, enabling Amazon CloudWatch Logs. See the Quick Start:
Install the CloudWatch Logs Agent Using AWS OpsWorks and Chef section in the AWS
OpsWorks documentation for more information.

Ganglia Built-in Layer and Custom Layers
In addition to using Amazon CloudWatch to monitor the resources in your stack, you can
also use the AWS OpsWorks Ganglia layer for additional application monitoring. The
Ganglia layer is a blueprint for a Ganglia master instance that monitors your stack by
using Ganglia distributed monitoring.

Typically, a stack includes only one Ganglia master instance. The standard AWS
OpsWorks recipes install a low-overhead Ganglia client on every instance. If your stack
includes a Ganglia layer, the Ganglia client will automatically report to the Ganglia
master once the instance comes online. The Ganglia master uses these data to compute
different statistics and displays the results via a web graphical interface.

The Chef Community also provides cookbooks for other popular monitoring tools such
as Nagios, Monit, and Munin. You can easily add one of these tools in your stack using a
custom layer.

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 13 of 19

Security
Security is a core functional requirement that protects mission-critical information from
accidental or deliberate mishandling such as theft, leakage, and deletion.

AWS provides a secure global infrastructure and foundation services—compute,
storage, networking and database—as well as higher level services. AWS provides a
range of security services and features that customers can use to secure their assets.
Under the shared responsibility model, AWS customers are responsible for protecting
their data in the cloud and for meeting specific information protection requirements.

AWS OpsWorks can leverage the standard AWS security features to meet customers’
security requirements and to provide a secure deployment environment.

Amazon Virtual Private Cloud
Amazon Virtual Private Cloud (Amazon VPC) enables you to encapsulate resources into
a virtual network that you define and that is logically isolated from other virtual networks
in the AWS cloud.

An Amazon VPC includes one or more subnets, each with an associated routing table
that directs traffic based on its destination IP address.

• Instances within an Amazon VPC can communicate with each other regardless of
their subnet.

• Subnets whose instances can communicate with the Internet are referred to
as public subnets. They communicate with the Internet via an Internet Gateway

• Subnets whose instances cannot communicate directly with the Internet are referred
to as private subnets. They can communicate with other instances in the Amazon
VPC, but must communicate with the Internet via a network address translation
(NAT) instance.

AWS OpsWorks requires that an Amazon VPC be configured so that all instances in the
stack, including those in private subnets, have access to the AWS OpsWorks and
Amazon S3 endpoints. You will also need access to the package repository for your
operating system and other dependencies such as Ruby gems. For instances in private
subnets, you can use a NAT to provide outbound connectivity to the Internet. See the
Running a Stack in a VPC section in the documentation for more information.

Amazon VPC provides two features that can be used to increase security for your
resources:

• Security groups act as a virtual firewall for your instance to control inbound and
outbound traffic.

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 14 of 19

• Network access control lists (ACLs) act as a firewall for associated subnets,
controlling both inbound and outbound traffic at the subnet level.

You can associate one or more security groups with your instances, and each instance
in your Amazon VPC could belong to a different set of security groups. Additionally, you
can further secure your instances by adding network ACLs to the subnets in your
Amazon VPC.

Managing Access to the Instances
Directly accessing your instances via SSH or RDP is generally not a best practice and
should be avoided. However, for troubleshooting purposes and when the information in
the logs in not enough, you may need to login to your instances. Using key pairs is the
default (and preferred) option to access your instances as it reduces the chance of
somebody gaining access to the instance by guessing the password.

The “Managing OS-level Access to Amazon EC2 Instances” section in the AWS Security
Best Practices whitepaper details how key pairs can be generated and how they fit in the
instance booting process.

Use AWS OpsWorks Permissions to Set Users’ Public SSH Keys
AWS OpsWorks allows you to select IAM users for each stack and define each user’s
permissions by using the AWS OpsWorks Permissions page or by attaching an
appropriate IAM policy. Using the AWS OpsWorks permissions page, you can control
which users have SSH access and sudo privileges on each instance in an AWS
OpsWorks stack. Each IAM user can register a public SSH key with AWS OpsWorks.
Once a public key is registered for an IAM user, you can grant privileges on a per-stack
basis to use that key to connect to the stack’s instances. For each such instance, AWS
OpsWorks will create an OS user, place the public key in the authorized_keys file, and
update the public key if the user changes it.

Bastion Host
Using key pairs with a bastion host can be challenging. In particular, it’s best to avoid
using the bastion host to store private keys that are required to connect to the instance.
One way to overcome this issue is to use SSH agent forwarding on the client. This
enables you to connect from the bastion host to your instances without the need to store
the private key on the bastion host. The AWS Security Blog details how to configure and
use SSH agent forwarding to connect to your instances.

When adding new instances to your stacks, you need to keep the hosts file on the
bastion host up-to-date. To facilitate this process, you can use this cookbook, which
creates a cron job to periodically update the host file.

Also, remember the following best practices when configuring your bastion host:

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 15 of 19

• When configuring the security group on the bastion host, apply the principle of least
privilege, allowing SSH connections—i.e., port TCP/22—only from known and
trusted IP addresses, such as your corporate network.

• You should have a bastion in each Availability Zone where your instances are. If your
deployment takes advantage of an Amazon VPC virtual private network (VPN)
connection, also have a bastion on premises.

• Configure the instances in your Amazon VPC to accept SSH connections only from a
bastion host instance.

• Use the bastion host instance only as a bastion host and not for anything else.
Additionally, you can harden the instance security further, e.g., enable SELinux, use
a remote syslog server for logs, and configure host-based intrusion detection.

Managing Secrets
Secrets—such as database passwords, AWS credentials or third-party API credentials—
must be stored and made available to servers that need to use them. If a server doesn’t
require a specific secret, it should not have access to it.

AWS OpsWorks Custom JSON or Chef data bags can be used to make data available to
nodes in an AWS OpsWorks stack. However, these methods are not suitable to share
secrets, as they are available in the clear to all stack users.

AWS OpsWorks Environment Variables
With AWS OpsWorks, you can define up to 20 environment variables for each
application. These variables are passed to the application server instances during
instance setup and can be updated on each application deployment. Custom layers can
use a recipe to retrieve a variable's value using standard Chef node syntax and then
store it in a form that is accessible to the layer's instances.

You can also define environment variables as protected values, so that they cannot be
read by AWS OpsWorks users. For example, you can set separate environment
variables for your database username and password. The password environment
variable can be defined as a protected value, so it cannot be viewed in the console,
AWS SDK, or CLI and is made available only to a specific application through JSON
passed to specific instances for use in Chef recipes.

Encrypted Data Bags with a Secret File on Amazon S3 with Server-
side Encryption (SSE)
Encrypted data bags use a shared secret and symmetric encryption of the data bag
values. Data is encrypted using AES-256-CBC using a random initialization vector each
time a value is encrypted to help protect against some forms of cryptanalysis. Only the
values of a data bag item are decrypted, while keys are still searchable. Encrypted data
bags can be decrypted only by a node or a user with the same shared secret.

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 16 of 19

This example shows how to modify the RDS-backed Simple Application Server Stack
from the AWS OpsWorks Getting Started guide to use an encrypted data bag to store
the DB username and password and to keep the secret file on an encrypted Amazon S3
bucket. You will need to have the Chef Development Kit (ChefDK) installed to create the
encrypted data bag using the knife command; follow these instructions to install
ChefDK.

First, let’s create the secret file that will be used to encrypt the data bag:

$ openssl rand -base64 512 | tr -d '\r\n' > secret_file

The resulting file can be uploaded to an Amazon S3 bucket, making sure to enable
server-side encryption for the object.

Make sure the IAM role attached to the instances in your stack—the default role is aws-
opsworks-ec2-role—includes a policy to allow access to the Amazon S3 bucket
where you uploaded your secret file:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt112233445566",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::bucket_name/secret_file"
]
 }
]
}

Create a plain text JSON file, containing the secrets to be shared:

$ echo "{\"id\": \"rdscredentials\", \"user\":
\"username\", \"password\": \"Passw0rd\"}" >>
plain_text.json

Create and encrypt the data bag using the secret file created before:

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 17 of 19

$ knife data bag create rdscredentials –z
Created data_bag[rdscredentials]
$ knife data bag from file rdscredentials
/path/to/plain_text.json --secret-file /path/to/secret_file
–z
Updated data_bag_item[rdscredentials::rdscredentials]

Modify the Stack Custom JSON to include your encrypted data bag and the details of the
secret key on Amazon S3.

{
 "deploy": {
 "simplephpapp": {
 "database": {
 "database": "my_rds_db",
 "host": "my-rds.xxxxxxxxxx.eu-west-
1.rds.amazonaws.com",
 "adapter": "mysql"
 }
 }
 },
 "opsworks": {
 "data_bags": {
 "rdscredentials": {
 "rdscredentials": {
 "id": "rdscredentials",
 "user": {
 "encrypted_data":
"zVrVESc4NDR9nHSQxY1YLL5aodcx+9r68J1wnJh2tEY=\n",
 "iv": "iDNa3Cr4X0GttXPtoFEOaQ==\n",
 "version": 1,
 "cipher": "aes-256-cbc"
 },
 "password": {
 "encrypted_data":
"cBYeshea0ps9JS4YBNsxt9VQEQTMkNF/q+6B4ZKWmS4=\n",
 "iv": "FtZGMPPOkoxKG9xQ3EF3xg==\n",
 "version": 1,
 "cipher": "aes-256-cbc"
 }
 }
 }
 }
 },
 "secret": {
 "bucket": "bucket_name",
 "object": "secret_file"

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 18 of 19

 }
}

Modify the appsetup.rb recipe so that the template resource reads the secret file from
the Amazon S3 bucket and the values from the encrypted data bag are used to compile
the template.

require 'rubygems'
require 'aws-sdk'

node[:deploy].each do |app_name, deploy|

 script "install_composer" do
 interpreter "bash"
 user "root"
 cwd "#{deploy[:deploy_to]}/current"
 code <<-EOH
 curl -sS https://getcomposer.org/installer | php
 php composer.phar install --no-dev
 EOH
 end

 template "#{deploy[:deploy_to]}/current/db-connect.php"
do
 source "db-connect.php.erb"
 mode 0660
 group deploy[:group]

 if platform?("ubuntu")
 owner "www-data"
 elsif platform?("amazon")
 owner "apache"
 end

 s3 = AWS::S3.new()
 secret =
s3.buckets[node[:secret][:bucket]].objects[node[:secret][:o
bject]].read.strip

 rdscredentials =
Chef::EncryptedDataBagItem.load("rdscredentials",
"rdscredentials", secret)

 variables(
 :host => (deploy[:database][:host] rescue nil),
 :user => (rdscredentials['user']),
 :password => (rdscredentials['password']),

Amazon Web Services – Managing Multi-Tiered Applications with AWS OpsWorks January 2015

Page 19 of 19

 :db => (deploy[:database][:database] rescue
nil),
 :table => (node[:phpapp][:dbtable] rescue nil)
)

 only_if do
 File.directory?("#{deploy[:deploy_to]}/current")
 end
 end
end

Conclusion
In this paper, we showed how you could use AWS OpsWorks to manage complex multi-
tiered applications, from designing a scalable and flexible architecture to continuously
provisioning and deploying infrastructure and applications. We also highlighted how
monitoring and security play an important role in such deployments and how AWS
OpsWorks enables you to easily manage these aspects.

Further Reading
For more information about managing multi-tiered applications with AWS OpsWorks, see
the following sources.

• Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation

• Continuous Integration and Deployment Best Practices on AWS

• Scalable Site Management Using AWS OpsWorks

• AWS Security Best Practices

