

Introduction to Scalable
Gaming Patterns on AWS

September 2017

© 2017, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Contents
Introduction 1

Getting Started 2

Game Design Decisions 2

Game Client Considerations 4

Launching an Initial Game Backend 5

High Availability, Scalability, and Security 9

Binary Game Data with Amazon S3 10

Expanding Beyond AWS Elastic Beanstalk 12

Reference Architecture 12

Games as REST APIs 15

HTTP Load Balancing 16

HTTP Auto Scaling 20

Game Servers 21

Matchmaking 23

Push Messages with Amazon SNS 24

Closing Thoughts 25

Relational vs. NoSQL Databases 25

MySQL 26

Amazon Aurora 28

Redis 30

MongoDB 30

Amazon DynamoDB 31

Other NoSQL Options 34

Caching 35

Binary Game Content with Amazon S3 38

Content Delivery and Amazon CloudFront 39

Uploading Content to Amazon S3 41

Amazon S3 Performance Considerations 46

Loosely Coupled Architectures with Asynchronous Jobs 47

Leaderboards and Avatars 48

Amazon SQS 48

Other Queue Options 50

Cost of the Cloud 51

Conclusion and Next Steps 52

Contributors 53

Document Revisions 53

Abstract
This whitepaper provides an overview of AWS services that can help architects,
developers, operators (IT and DevOps), and technical leaders in the gaming
industry build and deliver scalable, reliable, and cost effective cloud-enabled
solutions for common gaming workloads, such as content updates, analytics,
game servers, and other digital services.

Although this whitepaper is designed for those new to AWS, seasoned AWS
users might also find value in the content.

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 1

Introduction
Whether you’re an up-and-coming mobile developer or an established AAA
game studio, you understand the challenges involved with launching a
successful game in the current gaming landscape. Not only does the game have
to be compelling, but users also expect a wide range of online features such as
friend lists, leaderboards, weekly challenges, various multiplayer modes, and
ongoing content releases. To successfully execute a game launch, it’s critical to
get favorable app store ratings and reviews on popular e-retail channels to
provide sales and awareness momentum for your game–like the first weekend
of a movie release. To deliver these features, you need a server backend. The
server backend can consist of both the actual game servers for multiplayer
games or platform servers that power the game services such as chat,
matchmaking, etc. These server backends must be able to scale up at a
moment’s notice, in the event that the game goes viral and suddenly explodes
from 100 to 100,000 users. At the same time, the backend has to be cost
effective, so that you don’t overpay for unused server capacity.

Amazon Web Services (AWS) is a flexible, cost-effective, easy-to-use cloud
platform. By running your game on AWS, you can leverage capacity on demand
to scale up and down with your users, rather than having to guess at your server
demands and potentially over-purchase or under-purchase hardware. Many
social, mobile, and AAA developers have recognized the advantages of AWS, and
are having success running their games on the AWS Cloud.

This paper is broken into sections covering the different features of modern
games, such as friend lists, leaderboards, game servers, messaging, and user-
generated content. You can start small and just use the AWS components and
services you need. As your game evolves and grows, you can revisit this
whitepaper and evaluate additional AWS features.

AWS has a team of business and technical staff who are completely dedicated to
supporting our gaming customers. If you have questions about this whitepaper
or gaming on AWS, don’t hesitate to contact us. Please fill out a form at the
AWS for Game Developers website to get in touch with us.1

https://aws.amazon.com/gaming/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 2

Getting Started
If you are just getting started developing your game, it can be challenging to
figure out where to begin with your backend server development. Thankfully,
AWS can help you get started quickly, because you don’t have to make a
decision about every service that you’re going to use upfront. As you iterate on
your game, you can add AWS services over time. This enables you to develop
additional game features or backend functionality without having to plan for
everything at the beginning. We encourage you to start based on the game
features that you need, and then add more AWS features as your game evolves.
In this section, we’ll look at some common game features that determine which
types of services you’ll need.

Game Design Decisions
Modern social, mobile, and AAA games tend to share the following common
tenets that affect server architecture:

• Leaderboards and rankings – Players continue to look for a
competitive experience similar to classic arcade games. Increasingly,
though, the focus is on friends’ leaderboards, rather than just a single
global high score list. This requires a more sophisticated leaderboard
that can sort in multiple dimensions, while maintaining good
performance.

• Free to play – One of the biggest shifts over the past few years has
been the widespread move to free-to-play. In this model, games are free
to download and play, and the game earns money through in-app
purchases for items such as weapons, outfits, power-ups, and boost
points, as well as advertising. The game is funded by a small minority of
users that purchase these items, with the vast majority of users playing
for free. This means that your game backend needs to be as cost-effective
as possible, and must be able to scale up and down as needed. Even for
premiere AAA games, large percentages of revenue are now coming from
content updates and in-game purchases.

• Analytics – Maximizing long-tail revenue requires that games collect
and analyze a large number of metrics regarding gameplay patterns,
favorite items, purchase preferences, and so forth. Ensuring that new
game features target those areas of the game where users are spending

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 3

their time and money is a critical factor in the success of in-game
purchases.

• Content updates – Games that achieve the highest player retention
tend to have a continuous release cycle of new items, levels, challenges,
and achievements. The continuing trend of games becoming more of a
service that a single product re-enforces the need for constant post-
launch changes. These features require frequent updates with new data
and game assets. By using a content delivery network (CDN) to
distribute game content, you can cut costs and increase download speed.

• Asynchronous gameplay – While larger games generally include a
real-time online multiplayer mode, games of all kinds are realizing the
importance of asynchronous features to keep players engaged. Examples
of asynchronous play include competing against your friends based on
points, unlocks, badges, or similar achievements. This gives players the
feel of a connected game experience, even if they aren’t online all the
time, or if they are using slower networks like 3G or 4G for mobile
games.

• Push notifications – A common method of getting users to come back
to the game is to send targeted push notifications to their mobile device.
For example, a user might get a notification that their friend beat their
score, or that a new challenge or level is available. This draws the user
back into the core game experience even when they’re not directly
playing.

• Unpredictable clients – Modern games run on a wide variety of
platforms including mobile devices, consoles, PCs, and browsers. One
user could be roaming on their portable device, playing against a console
user on Wi-Fi, and both would expect a consistent experience. For this
reason, it’s necessary to leverage stateless protocols (for example, HTTP)
and asynchronous calls as much as possible.

Each of these game features has an impact on your server features and
technology. For example, if you have a simple Top 10 leaderboard, you might be
able to store it in a single MySQL or Amazon Aurora database table. However, if
you have complex leaderboards with multiple sort dimensions, it might be
necessary to use a NoSQL technology such as Redis or Amazon DynamoDB
(discussed later in this paper).

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 4

Game Client Considerations
Although the focus of this whitepaper is on the architecture you can deploy on
AWS, the implementation of your game client can also have an impact on your
game’s scalability. It also affects how much your game backend costs to run
because frequent network requests from the client use more bandwidth and
require more server resources. Here are a few important guidelines to follow:

• All network calls should be asynchronous and non-blocking. This means
that when a network request is initiated, the game client continues on,
without waiting for a response from the server. When the server
responds, this triggers an event on the client, which is handled by a
callback of some kind in the client code. On iOS, AFNetworking is one
popular approach.2 Browser games should use a call such as
jQuery.ajax()3 or the equivalent, and C++ clients should consider
libcurl4, std::async5 or similar libraries.

• Use JSON to transport data. It’s compact, cross-platform, fast to parse,
has tons of library support, and contains data type information. If you
have large payloads, simply gzip them, because the majority of web
servers and mobile clients have native support for gzip. Don’t waste time
over-optimizing—any payload in the range of hundreds of kilobytes
should be adequate. We have also seen developers use Apache Avro and
MessagePack depending on their use case, comfort level with the
formats, and availability of libraries. Note: An exception to this is
multiplayer gameplay packets, which are typically UDP, but this is a
separate topic.

• Use HTTP/1.1 with Keepalives, and reuse HTTP connections between
requests. This minimizes the overhead your game incurs when making
network requests. Each time you have to open a new HTTP socket, this
requires a three-way TCP handshake, which can add upwards of 50
milliseconds (ms). In addition, repeatedly opening and closing TCP
connections will accumulate large numbers of sockets in the
TIME_WAIT state on your server, which consumes valuable server
resources.

• Always POST any important data from the client to the server over SSL.
This includes login, stats, save data, unlocks, and purchases. The same
applies for any GET, PUT, and DELETE requests because modern
computers are efficient at handling SSL and the overhead is low. AWS

https://github.com/AFNetworking/AFNetworking
http://api.jquery.com/jQuery.ajax/
http://curl.haxx.se/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 5

enables you to have our Elastic Load Balancer handle the SSL workload,
which completely offloads it from your servers.6

• Never store security-critical data such as AWS access keys or other
tokens on the client device, either as part of your game data or user data.
Access key IDs and secret access keys allow the possessors of those keys
to make programmatic calls to AWS from the AWS Command Line
Interface (AWS CLI), Tools for Windows PowerShell, the AWS SDKs, or
direct HTTP calls using the APIs for individual AWS services. If
somebody roots or jailbreaks their device, you risk the possibility that
they could gain access to your server code, user data, and even your
AWS billing account. In the case of PC Games your keys likely exist in
memory when the game client is running and pulling them out isn’t that
hard for someone with the know-how. You just have to assume anything
you store on a game client will be compromised. If you want your game
client to directly access AWS services, consider Amazon Cognito
Federated Identities which allows your application to obtain temporary,
limited-privilege credentials.7

• As a precaution you should never trust what a game client sends you. It’s
an untrusted source and you should always validate what you receive.
Sometimes it’s malicious traffic (SQL Injection, XSS, etc.), but
sometimes it can be something as trivial as someone having their device
clock set to a time that’s in the past.

Again, some of these concerns are not specific to AWS, but keeping them in
mind will help you design a game that performs well and is reasonably secure.

Launching an Initial Game Backend
With the previous game features and client considerations in mind, let’s look at
a strategy for getting an initial game backend up and running on AWS as quickly
as possible. We’ll make use of a few key AWS services, with the ability to add
more as our game evolves.

To ensure we’re able to scale out as our game grows in popularity, we’ll leverage
stateless protocols as much as possible. Creating an HTTP/JSON API for the
bulk of our game features allows us to add instances dynamically and easily
recover from transient network issues. Our game backend consists of a server
that talks HTTP/JSON, stores data in MySQL, and uses Amazon Simple Storage

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-listener-config.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 6

Service (Amazon S3) for binary content. This type of backend is easy to develop
and can scale very effectively.

A common pattern for game developers is to run a web server locally on a laptop
or desktop for development, and then push the server code to the cloud when
it’s time to deploy. If you follow this pattern, AWS Elastic Beanstalk can greatly
simplify the process of deploying your code to AWS.8

Figure 1: A high level overview of your first game backend running on AWS

Elastic Beanstalk is a deployment management service that sits on top of other
AWS services such as Amazon Elastic Compute Cloud (Amazon EC2), Elastic
Load Balancing (ELB), and Amazon Relational Database Services (Amazon
RDS).

Amazon EC2 is a web service that provides secure, resizable compute capacity in
the cloud. It is designed to make at-scale cloud computing easier for developers.
The Amazon EC2 simple web service interface allows you to obtain and

https://aws.amazon.com/elasticbeanstalk/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 7

configure capacity with minimal friction. It reduces the time required to obtain
and boot new server instances to minutes, which allows you to quickly scale
capacity (up or down) as your computing requirements change.

ELB automatically distributes incoming application traffic across multiple
Amazon EC2 instances. It enables you to achieve fault tolerance in your
applications. ELB offers two types of load balancers that feature high
availability, automatic scaling, and robust security. These are the Classic Load
Balancer that routes traffic based on either application- or network-level
information, and the Application Load Balancer that routes traffic based on
advanced application-level information that includes the content of the request.
The Classic Load Balancer is ideal for simple load balancing of traffic across
multiple EC2 instances, while the Application Load Balancer is ideal for
applications that need advanced routing capabilities, microservices, and
container-based architectures.

Amazon RDS makes it easy to set up, operate, and scale a relational database in
the cloud. It provides cost-efficient and resizable capacity while automating
time-consuming administration tasks such as hardware provisioning, database
setup, patching, and backups. Amazon RDS supports six familiar database
engines, including Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle, and
Microsoft SQL Server.

You can push a zip, war, or git repository of server code to Elastic Beanstalk.
Elastic Beanstalk takes care of launching EC2 instances, attaching a load
balancer, creating an RDS MySQL DB instance, setting up Amazon CloudWatch
monitoring alerts, and deploying your application to the cloud. In short, Elastic
Beanstalk can set up the architecture shown in Figure 1 automatically. This is
covered in detail in Elastic Beanstalk Architecture.9

To see this in action, log in to the AWS Management Console10and follow the
Getting Started Using Elastic Beanstalk11 tutorial to create a new environment
with the programming language of your choice. This will launch the sample
application and boot a default configuration. You can use this environment to
get a feel for the Elastic Beanstalk control panel, how to update code, and how
to modify environment settings. If you’re new to AWS, you can use the AWS
Free Tier to set up these sample environments.12

https://aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.concepts.architecture.html
http://aws.amazon.com/console/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/GettingStarted.Walkthrough.html
http://aws.amazon.com/free/
http://aws.amazon.com/free/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 8

Note: The sample production environment described in this whitepaper will
incur costs because it includes AWS resources that aren’t covered under the free
tier.

With the sample application up, let’s create a new Elastic Beanstalk application
for our game, and two new environments, one for development and one for
production. We’ll customize these a bit for our game. Use the following table to
determine which settings to change, depending on the environment type. For
detailed instructions, see Managing and Configuring AWS Elastic Beanstalk
Applications13 and then follow the instructions for Creating an AWS Elastic
Beanstalk Environment in the AWS Elastic Beanstalk Developer Guide.14

Note: Replace My Game and mygame values with the name of your game.

Configuration Setting Development Value Production Value

Application Name My Game My Game

Environment Name mygame-dev mygame-prod

Environment URL http://mygame-
dev.elasticbeanstalk.com

http://mygame-
prod.elasticbeanstalk.com

Container Type 64-bit 64-bit

Instance Type t2.micro or t2.small m4.medium or c4.large

Health Check URL /healthchk (or similar)

Create RDS DB
instance?

Yes Yes

DB Engine mysql **Not recommended

Instance Class db.t2.small or db.t2.medium N/A

Allocated Storage 5 GB N/A

Deletion Policy Delete Create snapshot

Multiple Availability
Zones?

No Yes

By using two environments, you can enable a simple and effective workflow. As
you integrate new game backend features, you push your updated code to the
development environment. This triggers Elastic Beanstalk to restart the
environment and create a new version. In your game client code, create two
configurations, one that points to development and one that points to
production. Use the development configuration to test your game, and then use

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deployment.newapp.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deployment.newapp.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.environments.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.environments.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 9

the production profile when you want to create a new game version to publish to
the appropriate app stores.

When your new game client is ready for release, choose the correct server code
version from the development environment, and deploy it to the production
environment. By default, deployments incur a brief period of downtime while
your app is being updated and restarted. To avoid downtime for production
deployments, you can follow a pattern known as swapping URLs or blue/green
deployment. In this pattern, you deploy to a standby production environment,
and then update DNS to point to the new environment. For more details on this
approach, see Blue/Green Deployments with AWS Elastic Beanstalk in the AWS
Elastic Beanstalk Developer Guide.15

Important We don’t recommend that you use Elastic Beanstalk to manage
your database in a production environment because this ties the lifecycle of the
database instance (DB instance) to the lifecycle of your application’s
environment.

Instead, we recommend that you run a DB instance in Amazon RDS and
configure your application to connect to it on launch. You can also store
connection information in Amazon S3 and configure Elastic Beanstalk to
retrieve that information during deployment with .ebextensions. You can add
AWS Elastic Beanstalk configuration files (.ebextensions) to your web
application's source code to configure your environment and customize the
AWS resources that it contains. Configuration files are YAML formatted
documents with a .config file extension that you place in a folder named
.ebextensions and deploy in your application source bundle.

For more information, see Advanced Environment Customization with
Configuration Files (.ebextensions) in the AWS Elastic Beanstalk Developer
Guide.

High Availability, Scalability, and Security
For the production environment, you need to ensure that your game backend is
deployed in a fault-tolerant manner. Amazon EC2 is hosted in multiple AWS
Regions worldwide. You should choose a Region that is near the bulk of your
game’s customers. This ensures that your users have a low-latency experience
with your game. For more information and a list of the latest AWS Regions, see
the AWS Global Infrastructure webpage.16

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 10

Within each Region are multiple, isolated locations known as Availability
Zones, which you can think of as logical data centers. Each of the Availability
Zones within a given Region is isolated physically, yet connected via high-speed
networking so they can be used together. Balancing your servers across two or
more Availability Zones within a Region is a simple way to increase your game’s
high availability. Using two Availability Zones is a good balance of reliability
and cost for most games, since you can pair your server instances, DB instances,
and cache instances together.

Elastic Beanstalk can automatically deploy across multiple Availability Zones
for you. To use multiple Availability Zones with Elastic Beanstalk, see
Configuring Auto Scaling with Elastic Beanstalk in the AWS Elastic Beanstalk
Developer Guide.17 For additional scalability, you can leverage Auto Scaling to
add and remove instances from these Availability Zones. For best results,
consider modifying the Auto Scaling trigger to specify a metric (such as CPU
usage) and threshold based on your application’s performance profile. If the
threshold you specify is hit, Elastic Beanstalk automatically launches additional
instances. This is covered in more detail in the Auto Scaling section later in this
paper.

For development and test environments, a single Availability Zone is usually
adequate so you can keep costs low—assuming you can tolerate a bit of
downtime in the event of a failure. However, if your development environment
is actually used by QA testers to validate builds late at night, you probably want
to treat this more like a production environment. In that case, leverage multiple
Availability Zones like you would in production.

Finally, set up the load balancer to handle SSL termination, so that SSL
encryption and decryption is offloaded from your game backend servers. This is
covered in Configuring HTTPS for Your Elastic Beanstalk Environment in the
AWS Elastic Beanstalk Developer Guide.18 We strongly recommend that you
use SSL for your game backend. For more ELB tips, see the HTTP Load
Balancing section later in this paper.

Binary Game Data with Amazon S3
Finally, you need to create an S3 bucket for each Elastic Beanstalk server
environment that you created previously. This S3 bucket stores your binary
game content, such as patches, levels, and assets. Amazon S3 uses an HTTP-

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.as.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/configuring-https.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 11

based API for uploading and downloading data, which means that your game
client can use the same HTTP library for talking to your game servers that’s
used to download game assets. With Amazon S3, you pay for the amount of data
you store and the bandwidth for clients to download it. For more information,
see Amazon S3 Pricing.19

To get started, create an S3 bucket in the same Region as your servers. For
example, if you deployed Elastic Beanstalk to the us-west-2 (Oregon) Region,
choose this same Region for Amazon S3. For simplicity, use a similar naming
convention for the bucket that you used for your Elastic Beanstalk environment
(for example, mygame-dev or mygame-prod). For step-by-step directions, see
Create a Bucket in the Amazon S3 Developer Guide.20 Remember to create a
separate S3 bucket for each of your Elastic Beanstalk environments (that is,
development, production, etc.).

By default, S3 buckets are private, and require that users authenticate to
download content for security. For game content, you have two options. First,
you could make the bucket public, which means that anyone with the bucket
name can download your game content. Second, a better way to manage
authentication is to use signed URLs, which is a feature that enables you to pass
Amazon S3 credentials as part of the URL. In this scheme, your game server
code redirects users to an Amazon S3 signed URL, which you can set to expire
after a period of time. For instructions on how to create a signed URL, see
Authenticating Requests (AWS Signature Version 4) in the Amazon S3 API
Reference. If you are using one of the official AWS SDKs in a language of your
choice, there is also a good chance that the SDK has built-in methods for
generating a pre-signed URL. A pre-signed URL gives you access to the object
identified in the URL, provided that the creator of the pre-signed URL has
permissions to access that object. Generating a pre-signed URL is a completely
offline operation (no API calls are involved), making it a very fast operation.

Finally, as your game grows, you can use Amazon CloudFront to provide better
performance and it can save you money on data transfer costs. For more
information, see What is Amazon CloudFront in the Amazon CloudFront
Developer Guide.21

http://aws.amazon.com/s3/pricing/
http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 12

Expanding Beyond AWS Elastic Beanstalk
The core game backend scales as your game increases in popularity and needs to
respond to demand over a period of time. By leveraging HTTP for the bulk of
your calls, you are able to easily scale up and down in response to changing
usage patterns. Storing binary data in Amazon S3 saves you money compared to
serving files from Amazon EC2, and Amazon S3 also takes care of data
availability and durability for you. Amazon RDS provides you with a managed
MySQL database that you can grow over time with Amazon RDS features, such
as read replicas.

If your game needs additional functionality, you can easily expand beyond
Elastic Beanstalk to other AWS services, without having to start over. Elastic
Beanstalk supports configuring other AWS services via the Elastic Beanstalk
Environment Resources.22 For example, you can add a caching tier using
Amazon ElastiCache, which is a managed cache service that supports both
Memcached and Redis. For details about adding an ElastiCache cluster, see the
Example Snippets: ElastiCache in the Amazon ElastiCache User Guide.23

Of course, you can always just launch other AWS services yourself and then
configure your app to use them. For example, you could choose to augment or
even replace your RDS MySQL DB instance or Amazon Aurora database with
DynamoDB, the AWS managed NoSQL offering, or another NoSQL database
such as MongoDB that you deploy to Amazon EC2 yourself. Even though we’re
using Elastic Beanstalk to get started, you still have access to all the other AWS
services as your game grows.

Reference Architecture
With our core game backend up and running, the next step is to examine the
other AWS services that could be useful for our game. Before continuing, let’s
look at the following reference architecture for a horizontally scalable game
backend. This diagram depicts a game backend that supports a very wide set of
game features, including login, leaderboards, challenges, chat, binary game
data, user-generated content, analytics, and online multiplayer. Not all games
have all these components, but this diagram provides a good visualization of
how they would all fit together. In the remaining sections of this whitepaper,
we’ll cover each component in depth.

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environment-resources.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-environment-resources-elasticache.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 13

Figure 2: A fully production-ready game backend running on AWS

Figure 2 may seem overwhelming at first, but it's really just an evolution of the
initial game backend we launched using Elastic Beanstalk.

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 14

Number Description

1

The diagram shows two Availability Zones, set up with identical functionality for
redundancy. Not all components are shown in both Availability Zones due to space
constraints, but both Availability Zones would function equivalently. These Availability
Zones could be the same as the two Availability Zones you initially chose using Elastic
Beanstalk.

2

The HTTP/JSON servers and master/slave DBs could be the same ones you launched
using Elastic Beanstalk. You continue to build out as much of your game functionality in
the HTTP/JSON layer as possible. You can leverage HTTP Auto Scaling to add and
remove EC2 HTTP instances automatically in response to user demand. For more
information, see the HTTP Auto Scaling section later in this paper.

3

You can use the same S3 bucket that you initially created for binary data. Amazon S3 is
built to be highly scalable and needs little tuning over time. As your game assets and user
traffic continue to expand, you can add Amazon CloudFront in front of Amazon S3 to
boost download performance and save costs.

4

If your game has features requiring stateful sockets, such as chat or multiplayer
gameplay, these features are typically handled by game servers running code just for
those features. These servers run on EC2 instances separate from your HTTP instances.
For more information, see the Stateful Game Servers section later in this paper.

5

As your game grows and your database load increases, the next step is to add caching,
typically by using Amazon ElastiCache, which is the AWS managed caching service.
Caching frequently accessed items in ElastiCache offloads read queries from your
database. This is covered in the Caching section later in this paper.

6

The next step is to look at moving some of your server tasks to asynchronous jobs, and
using Amazon Simple Queue Service (SQS) to coordinate this work.24 This allows for a
loosely coupled architecture where two or more components exist and each has little or no
knowledge of other participating components, but they interoperate to achieve a specific
purpose. Amazon SQS eliminates dependencies on the other components in a loosely-
coupled system. For example, if your game allows users to upload and share assets such
as photos or custom characters, you should execute time-intensive tasks such as image
resizing in a background job. This will result in quicker response times for your game,
while also decreasing the load on your HTTP server instances. These strategies are
discussed in the Asynchronous Jobs section later in this paper.

7

As your database load continues to grow, you can add Amazon RDS read replicas to help
you scale out your database reads even further. This also helps reduce the load on your
main database because you can read from the replica and you only access the master
database to write. This is covered in the MySQL section later in this paper.

8

At some point, you may decide to introduce a NoSQL service such as Redis or
DynamoDB to supplement your main database for functionality such as leaderboards, or
to take advantage of NoSQL features such as atomic counters. We discuss these options
in the section on NoSQL Databases. (Note: Not shown in Figure 2.)

9

If your game includes push notifications, you can use Amazon Simple Notification Service
(Amazon SNS)25 and its support for Mobile Push26 to simplify the process of sending push
messages across multiple mobile platforms. Your EC2 instances can also receive Amazon
SNS messages, which enables you to do things like broadcast messages to all players
currently connected to your game servers.

http://aws.amazon.com/sqs/
http://aws.amazon.com/sns/
http://aws.amazon.com/sns/
http://aws.typepad.com/aws/2013/08/push-notifications-to-mobile-devices-using-amazon-sns.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 15

If you look at a single Availability Zone in Figure 2 and compare it to the core
game backend we launched with Elastic Beanstalk, you can see how scaling your
game builds on the initial backend pieces by adding caching, database replicas,
and background jobs. With this in mind, let’s look at each component.

Games as REST APIs
As mentioned earlier, to make use of horizontal scalability, you should
implement most of your game’s features using an HTTP/JSON API, which
typically follows the REST architectural pattern.27 Game clients, whether on
mobile devices, tablets, PCs, or consoles, make HTTP requests to your servers
for data such as login, sessions, friends, leaderboards, and trophies. Clients do
not maintain long-lived connections to the server, which makes it easy to scale
horizontally by adding HTTP server instances. Clients can recover from network
issues by simply retrying the HTTP request.

When properly designed, a REST API can scale to hundreds of thousands of
concurrent players. This is the pattern we followed in the previous Elastic
Beanstalk example. RESTful servers are straightforward to deploy on AWS, and
they benefit from the wide variety of HTTP development, debugging, and
analysis tools that are available on AWS.

Some modes of gameplay, though, benefit from a stateful two-way socket that
can receive server-initiated messages. Examples include real-time online
multiplayer, chat, or game invites. If your game doesn’t have these features, you
can implement all of your functionality using a REST API. We’ll discuss stateful
servers later in this paper, but first let’s focus on our REST layer.

Deploying a REST layer to Amazon EC2 typically consists of an HTTP server
such as Nginx or Apache, plus a language-specific application server. The
following table lists some of the popular packages that game developers use to
build REST APIs.

Language Packages

Ruby Rails,28 Sinatra,29 Grape30

Python Flask,31 Bottle32

http://en.wikipedia.org/wiki/Representational_state_transfer
http://rubyonrails.org/
http://www.sinatrarb.com/
https://github.com/intridea/grape
http://flask.pocoo.org/
http://bottlepy.org/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 16

Language Packages

Node.js Express,33 Restify34

PHP Slim,35 Silex 36

Java Spring,37 Jersey38

Go Gin39

This is just a sampling–you can build a REST API in any web-friendly
programming language. Since Amazon EC2 gives you complete root access to
the instance, you can deploy any of these packages. For Elastic Beanstalk, there
are some restrictions on supported packages. For details, see the Elastic
Beanstalk FAQs.40

RESTful servers benefit from medium-sized instances, since this enables more
to be deployed horizontally at the same price point. Medium-sized instances
from the general purpose instance family (for example, M4) or compute
optimized instance family (for example, C4) are a good match for REST servers.

HTTP Load Balancing
Load balancing RESTful servers is very straightforward because HTTP
connections are stateless. AWS offers Elastic Load Balancing (ELB), which is the
easiest approach to HTTP load balancing for games on Amazon EC2.41 You may
recall from our example game backend that Elastic Beanstalk automatically
deploys an ELB load balancer to load balance your EC2 instances for you. If you
use Elastic Beanstalk to get started, you will already have an ELB load balancer
running.

Follow these guidelines to get the most out of ELB:

• Always configure ELB to balance between at least two Availability Zones
for redundancy and fault tolerance. ELB handles balancing traffic
between the EC2 instances in the Availability Zones that you specify. If
you want an equal distribution of traffic on servers, you should also
enable cross-zone load balancing even if there are an unequal number of
servers per Availability Zone. This ensures optimal usage of servers in
your fleet.

http://expressjs.com/
https://github.com/mcavage/node-restify
http://www.slimframework.com/
http://silex.sensiolabs.org/
http://www.springsource.org/
http://jersey.java.net/
https://github.com/gin-gonic/gin
https://aws.amazon.com/elasticbeanstalk/faqs/
https://aws.amazon.com/elasticbeanstalk/faqs/
http://aws.amazon.com/elasticloadbalancing/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 17

• Configure ELB to handle SSL encryption and decryption. This offloads
SSL from your HTTP servers, which means that there is more CPU for
your application code. For more information, see Create an HTTPS Load
Balancer in the Classic Load Balancer Guide.42 To test SSL for
development purposes, see How to Create a Self-Signed SSL Certificate
in the AWS Certificate Manager User Guide.43

• ELB automatically removes any EC2 instances that fail from its load
balancing pool. To ensure that the health of your HTTP EC2 instances is
accurately monitored, configure your load balancer with a custom health
check URL. Then, write server code that responds to that URL and
performs a check on your application’s health. For example, you could
set up a simple health check that verifies that you have DB connectivity.
The health check return 200 Ok if your health checks pass or 500 Server
Error if your instance is unhealthy.

• Each ELB load balancer that you deploy must have a unique DNS name.
To set up a custom DNS name for your game, you can use a DNS alias
(CNAME) to point your game’s domain name to the load balancer. For
detailed instructions, see Configure a Custom Domain Name for Your
Classic Load Balancer in the Classic Load Balancer Guide.44 Note that
when your load balancer scales up or down, the IP addresses that the
load balancer uses change, so it’s very important to make sure you are
using a DNS CNAME alias to the load balancer, and that you’re not
referencing the load balancer’s current IP addresses in your DNS
domain.

• ELB is designed to scale up by roughly a factor of 50 percent every 5
minutes. For the vast majority of games, this works just fine, even when
they suddenly go viral. However, if you are anticipating a sudden huge
spike in traffic—perhaps due to a new downloadable content release or
marketing promotion—ELB can be pre-warmed to scale up in advance
for this event. To pre-warm ELB, submit an AWS support request with
the anticipated load (this requires at least Business Level Support45). For
more details on ELB pre-warming and best practices for running load
tests against ELB, see the AWS article Best Practices in Evaluating
ELB.46

For more information about ELB, see What is Elastic Load Balancing?.47

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/US_SettingUpLoadBalancerHTTPS.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/US_SettingUpLoadBalancerHTTPS.html
http://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/using-domain-names-with-elb.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/using-domain-names-with-elb.html
http://aws.amazon.com/premiumsupport/
http://aws.amazon.com/articles/1636185810492479
http://aws.amazon.com/articles/1636185810492479
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/SvcIntro.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 18

Application Load Balancer
Application Load Balancer is the second generation load balancer that provides
more granular control over traffic routing based at the HTTP/HTTPS layer. In
addition to the features described in the previous section, the following features
that come with Application Load Balancer can be highly beneficial to a gaming-
centric workload:

• Explicit support for Amazon EC2 Container Service (Amazon
ECS) – Application Load Balancer can be configured to load balance
containers across multiple ports on a single EC2 instance. Dynamic
ports can be specified in an ECS task definition, which will give the
container an unused port when scheduled on EC2 instances.

• HTTP/2 support – A revised edition of the older HTTP/1.1 protocol,
HTTP/2 and Application Load Balancer together deliver additional
network performance as a binary protocol, as opposed to a textual one.
Binary protocols are inherently more efficient to process and are much
less error prone, which can improve stability. Additionally, HTTP/2
supports multiplexing, which enables the reuse of TCP connections for
downloading content from multiple origins and cuts down on network
overhead.

• Native IPv6 support – With the near exhaustion of IPv4 addresses,
many application providers are changing to a model where applications
without IPv6 support are rejected on their platform. Application Load
Balancer natively supports IPv6 endpoints and routing to VPC IPv6
addresses.

• WebSockets support – Like HTTP/2, Application Load Balancer
supports the WebSocket protocol, which enables you to set up a long-
standing TCP connection between a client and server. This is a much
more efficient method than standard HTTP connections, which were
usually held open with a sort of heartbeat, which contributes to network
traffic. WebSocket is a great use case for delivering dynamic data like
updated leaderboards while minimizing traffic and power use on a
mobile device. ELB enables the support of WebSockets by changing the
listener from HTTP to TCP. However, when it’s in TCP Mode, ELB
allows the Upgrade header when a connection is established, and then
the ELB load balancer terminates any connection that is idle for more
than 60 seconds (for example, a packet isn’t sent within that timeframe).

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 19

This means that the client has to reestablish the connection and any
WebSocket negotiation fails if the ELB load balancer sends an upgrade
request and establishes a WebSocket connection to other backend
instances.

Custom Load Balancer
Alternatively, you can deploy your own load balancer to Amazon EC2, if you
need specific features or metrics that ELB does not provide. Popular choices for
games include HAProxy48 and F5’s BIG-IP Virtual Edition,49 both of which can
run on Amazon EC2. If you decide to use a custom load balancer, follow these
recommendations:

• Deploy the load balancer software (such as HAProxy) to a pair of EC2
instances, each in a different Availability Zone for redundancy.

• Assign an Elastic IP address to each instance. Create a DNS record
containing both of those Elastic IP addresses as your entry point. This
allows DNS to round robin between your load balancer instances.

• If you are using Amazon Route 53, our highly available and scalable
cloud Domain Name System (DNS) web service, use Route 53 health
checks to monitor your load balancer EC2 instances to detect failure.50
This ensures that traffic doesn’t get routed to a load balancer that is
down.

• In order to have HAProxy handle SSL traffic, you need the latest
development version of 1.5 or later. For more information, see Simple
SPDY and NPN Negotiation with HAProxy at Ilya Grigorik’s blog.51

If you decide to deploy your own load balancer, keep in mind that there are
several aspects you need to handle on your own. First and foremost, if your load
surpasses what your load balancer instances can handle, you need to launch
additional EC2 instances and follow the previous steps to add them to your
application stack. In addition, new auto-scaled application instances aren’t
automatically registered with your load balancer instances. You need to write a
script that updates the load balancer configuration files and restarts the load
balancers.

If you are interested in HAProxy as a managed service, consider AWS
OpsWorks, which uses Chef Automate to manage EC2 instances and can deploy
HAProxy as an alternative to ELB.52

http://haproxy.1wt.eu/
https://aws.amazon.com/marketplace/pp/B00B9KW32I/ref=portal_asin_url
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/health-checks-creating-deleting.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/health-checks-creating-deleting.html
https://www.igvita.com/2012/10/31/simple-spdy-and-npn-negotiation-with-haproxy/
https://www.igvita.com/2012/10/31/simple-spdy-and-npn-negotiation-with-haproxy/
http://aws.amazon.com/opsworks/
http://aws.amazon.com/opsworks/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 20

HTTP Auto Scaling
The ability to dynamically grow and shrink server resources in response to user
patterns is a primary benefit of running on AWS. Auto Scaling enables you to
scale the number of EC2 instances in one or more Availability Zones, based on
system metrics such as CPU utilization or network throughput. For an overview
of the functionality that Auto Scaling provides, see What Is Auto Scaling?,53 and
then walk through Getting Started with Auto Scaling.54

You can use Auto Scaling with any type of EC2 instance, including HTTP, a
game server, or a background worker. HTTP servers are the easiest to scale
because they sit behind a load balancer that distributes requests across server
instances. Auto Scaling handles the registration or deregistration of HTTP-
based instances from ELB dynamically, which means that traffic will be routed
to a new instance as soon as it’s available.

To use Auto Scaling effectively, you need to choose good metrics to trigger scale
up and scale down activities. To determine your metrics, follow these
guidelines:

• CPUUtilization is often a good CloudWatch metric to use. Web servers
tend to be CPU limited, whereas memory remains fairly constant when
the server processes are running. A higher percentage of CPU tends to
show that the server is becoming overloaded with requests. For finer
granularity, pair CPUUtilization with NetworkIn or NetworkOut.

• Benchmark your servers to determine good values to scale on. For HTTP
servers, you can use a tool such as Apache Bench55 or HTTPerf56 to
measure your server response times. Increase the load on your servers
while monitoring CPU or other metrics. Make note of the point at which
your server response times degrade, and see how this correlates to your
system metrics.

• When configuring your Auto Scaling group, choose two Availability
Zones, and a minimum of at least two servers. This will ensure your
game server instances are properly distributed across multiple
Availability Zones for high availability. ELB takes care of balancing the
load between multiple Availability Zones for you.

For details on configuring scaling policies, see Auto Scaling Based on Demand
in the Auto Scaling User Guide.57

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AS_Concepts.html
http://docs.aws.amazon.com/AutoScaling/latest/GettingStartedGuide/Welcome.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://code.google.com/p/httperf/
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/as-scale-based-on-demand.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 21

Installing Application Code
When you use Auto Scaling with Elastic Beanstalk, Elastic Beanstalk takes care
of installing your application code on new EC2 instances as they’re scaled up.
This is one of the advantages of the managed container that Elastic Beanstalk
provides.

However, if you’re using Auto Scaling without Elastic Beanstalk, you need to
take care of getting your application code onto your EC2 instances to implement
automatic scaling. If you are already using Chef or Puppet, consider using them
to deploy application code on your instances. AWS OpsWorks Auto Scaling,
which leverages Chef to configure instances, offers a variant of Auto Scaling that
provides both time-based and load-based automatic scaling.58 With OpsWorks,
you can also set up custom startup and shutdown steps for your instances as
they scale. OpsWorks is a great alternative to managing automatic scaling if
you’re already using Chef, or if you’re interested in using Chef to manage your
AWS resources. For more information, see Managing Load with Time-based
and Load-based Instances in the AWS OpsWorks User Guide.59

If you’re not using any of these packages, you can use the Ubuntu cloud-init
package as a simple way to pass shell commands directly to EC2 instances.60
You can use cloud-init to run a simple shell script that fetches the latest
application code and starts up the appropriate services. This is supported by the
official Amazon Linux AMI, as well as the Canonical Ubuntu AMIs.61 For more
details on these approaches, see the AWS Architecture Center.62

Game Servers
A game server’s approach is the opposite of a RESTful approach. Clients
establish a stateful two-way connection to the game server, via UDP, TCP, or
WebSockets, enabling both the client and server to initiate messages. If the
network connection is interrupted, the client must perform reconnect logic, and
possibly logic to reset its state as well. Stateful game servers introduce
challenges for automatic scaling because clients can’t simply be round robin
load balanced across a pool of servers.

Historically, many games used stateful connections and long-running server
processes for all of their game functionality, especially in the case of larger AAA
and MMO games. If you have a game that is architected in this manner, you can
run it on AWS. We offer a managed service in Amazon Gamelift that aids you in

http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autoscaling.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autoscaling.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autoscaling.html
https://help.ubuntu.com/community/CloudInit
https://help.ubuntu.com/community/CloudInit
https://aws.amazon.com/amazon-linux-ami/
http://aws.amazon.com/architecture
https://aws.amazon.com/gamelift/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 22

deploying, operating, and scaling dedicated game servers for session-based
multiplayer games. You can also choose to run your own orchestration for game
servers that uses Amazon EC2. Both are good choices depending on what your
requirements are. However, for new games, we encourage you to leverage HTTP
as much as possible, and only use stateful sockets for aspects of your game that
really need it (such as online multiplayer).

The following table list several packages that you can use to build event-driven
servers.

Language Packages

Ruby Event Machine63

Python gevent,64 Twisted65

Node.js Core,66 Socket.io,67 Async.js68

Erlang Core69

Java JBoss Netty70

C++ isn’t listed in the table because it tends to be the language of choice for
multiplayer game servers. Most game engines, such as Amazon Lumberyard,
and Unreal Engine, are written in C++. An exception to this is Unity which is
written in C#. This enables you to take existing game code from the client and
reuse it on the server. This is particularly valuable when running physics or
other frameworks on the server (such as Havok), which frequently only support
C++. However, your choice of server programming language isn’t a crucial
decision point. Network and database latency is almost always the limiting
factor for game servers. You should choose whatever language is easiest for you
to program, monitor, and debug.

Regardless of programming language, stateful socket servers generally benefit
from as large an instance as possible, since they are more sensitive to issues
such as network latency. The largest instances in the Amazon EC2 compute
optimized instance family (for example, c4.*) are often the best options. These
new-generation instances use enhanced networking via single root I/O
virtualization (SR-IOV), which provides high packets per second, lower latency,
and low jitter. This makes them ideal for game servers. To learn more, see the
AWS whitepaper Optimizing Multiplayer Game Server Performance on AWS.71

https://github.com/eventmachine/eventmachine
http://www.gevent.org/
http://twistedmatrix.com/
http://nodejs.org/
http://socket.io/
https://github.com/caolan/async
http://www.erlang.org/
https://netty.io/wiki/index.html
https://d0.awsstatic.com/whitepapers/optimizing-multiplayer-game-server-performance-on-aws.pdf

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 23

Matchmaking
Matchmaking is the feature that gets players into games. Typically,
matchmaking follows a process like the following:

1. Ask the user about the type of game they would like to join (for example,
deathmatch, time challenge, etc.).

2. Look at what game modes are currently being played online.

3. Factor in variables such as the user's geolocation (for latency) or ping
time, language, and overall ranking.

4. Place the user on a game server that contains a matching game.

Games servers require long-lived processes, and they can't simply be round-
robin load balanced in the way that you can with an HTTP request. After a
player is on a given server, they remain on that server until the game is over,
which could be minutes or hours.

In a modern cloud architecture, you should minimize your usage of long-
running game server processes to only those gameplay elements that require it.
For example, imagine an MMO or open-world shooter game. Some of the
functionality, such as running around the world and interacting with other
players, requires long-running game server processes. However, the rest of the
API operations, such as listing friends, altering inventory, updating stats, and
finding games to play, can easily be mapped to a REST web API.

In this approach, game clients would first connect to your REST API, and
request a stateful game server. Your REST API would then perform
matchmaking logic, and give clients an IP address and port of a server to
connect to. The game client then connects directly to that game server’s IP
address.

This hybrid approach gives you the best performance for your socket servers
because clients can directly connect to the EC2 instances. At the same time, you
still get the benefits of using HTTP-based calls for your main entry point. For
more information about implementing matchmaking in a custom serverless
environment, see the Fitting the Pattern: Serverless Custom Matchmaking with
Amazon GameLift on the Lumberyard & Amazon GameLift Blog.72

https://aws.amazon.com/blogs/gamedev/fitting-the-pattern-serverless-custom-matchmaking-with-amazon-gamelift/
https://aws.amazon.com/blogs/gamedev/fitting-the-pattern-serverless-custom-matchmaking-with-amazon-gamelift/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 24

Push Messages with Amazon SNS
There are two main categories of push messages in gaming: messages targeted
at a specific user, such as game invites or mobile push notifications, and group
messages, such as chat or gameplay packets. A common strategy for sending
and receiving these messages is to use a socket server with a stateful connection.
If your player base is small enough so that everyone can connect to a single
server, you can route messages between players simply by selecting different
sockets. In most cases, though, you need to have multiple servers, which means
those servers also need some way to route messages between themselves.

Routing messages between EC2 server instances is one use case where Amazon
SNS can help. Let’s assume you had player 1 on server A, who wants to send a
message to player 2 on server C, as shown in the following figure. In this
scenario, server A could look at locally connected players, and when it can’t find
player 2, server A can forward the message to an SNS topic, which then
propagates the message to other servers.

Figure 3: SNS-backed player to player communication between servers

Amazon SNS fills a role here that is similar to a message queue such as
RabbitMQ or Apache ActiveMQ. Instead of Amazon SNS, you could run
RabbitMQ, Apache ActiveMQ, or a similar package on Amazon EC2. The
advantage of Amazon SNS is that you don’t have to spend time administering
and maintaining queue servers and software on your own. For more

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 25

information about Amazon SNS, see What is Amazon Simple Notification
Service?73 and Create a Topic74 in the Amazon SNS Developer Guide.

Mobile Push Notifications
Amazon SNS also supports the ability to send push notifications directly to
mobile clients. Unlike the previous use case, which is designed to handle near
real-time in-game messaging, mobile push is best choice for sending a user a
message when they are out of game, to draw them back in. An example might be
a user-specific event, such as a friend beating your high score, or a broader
game event such as a Double-XP Weekend.

Mobile push is an extension of Amazon SNS, so it uses the same concept of
topics, but with a different endpoint. Your server code puts a message into the
appropriate SNS topic based on some in-game event, and then that message is
delivered to the corresponding user’s device. Amazon SNS mobile push handles
the differences in APIs between the different push notification platforms for you
including APNS, GCM, and ADM. For more information and a full list of
supported platforms, see Amazon SNS Mobile Push Notifications in the Amazon
SNS Developer Guide.75

Closing Thoughts
It’s easy to become obsessed with finding the perfect programming framework
or pattern. Both RESTful and stateful game servers have their place, and any of
the languages discussed previously will work well if programmed thoughtfully.
More importantly, you need to spend time thinking about your overall game
data architecture—where data lives, how to query it, and how to efficiently
update it.

Relational vs. NoSQL Databases
The advent of horizontally scaled applications has changed the application tier,
and the traditional approach of a single large relational database. A number of
new databases have become popular that eschew traditional Atomicity,
Consistency, Isolation, and Durability (ACID) concepts in favor of lightweight
access, distributed storage, and eventual consistency. These NoSQL databases
can be especially beneficial for games, where data structures tend to be lists and
sets (for example, friends, leaderboards, levels, items) as opposed to complex
relational data.

http://docs.aws.amazon.com/sns/latest/dg/welcome.html
http://docs.aws.amazon.com/sns/latest/dg/welcome.html
http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/sns/latest/dg/SNSMobilePush.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 26

As a general rule, the biggest bottleneck for online games tends to be database
performance. A typical web-based app has a high number of reads and few
writes. Think of reading blogs, watching videos, and so forth. Games are quite
the opposite, with reads and writes frequently hitting the database due to
constant state changes in the game.

There are many database options out there for both relational and NoSQL
flavors, but the ones used most frequently for games on AWS are MySQL,
Amazon Aurora, Redis, MongoDB, and Amazon DynamoDB.

First, we’ll cover MySQL because it’s applicable to gaming and remains very
popular. Combinations such as MySQL and Redis, or MySQL and DynamoDB,
are very successful on AWS. All of the database alternatives described in this
section support atomic operations such as increment and decrement, which are
crucial for gaming.

MySQL
As an ACID-compliant relational database, MySQL has the following
advantages:

• Transactions – MySQL provides support for grouping multiple
changes into a single atomic transaction that must be committed or
rolled back. NoSQL stores typically lack multi-step transactional
functionality.

• Advanced querying – Since MySQL speaks SQL, this provides the
flexibility to perform complex queries that evolve over time. NoSQL
databases typically only support access by key or a single secondary
index. This means you must make careful data design decisions up front.

• Single source of truth – MySQL guarantees data consistency
internally. Part of what makes many NoSQL solutions faster is
distributed storage and eventual consistency. (Eventual consistency
means you could write a key on one node, fetch that key on another
node, and have it not be there immediately.)

• Extensive tools – MySQL has been around since the 1990s, and there
are extensive debugging and data analysis tools available for it. In
addition, SQL is a general-purpose language that is widely understood.

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 27

These advantages continue to make MySQL attractive, especially for aspects of
gaming such as account records, in-app purchases, and similar functionality
where transactions and data consistency are paramount. Even gaming
companies that are leveraging NoSQL offerings such as Redis and DynamoDB
frequently continue to put transactional data such as accounts and purchases in
MySQL.

If you’re using MySQL on AWS, we recommend that you use Amazon RDS to
host MySQL because it can save you valuable deployment and support cycles.
Amazon RDS for MySQL automates the time-consuming aspects of database
management such as launching EC2 instances, configuring MySQL, attaching
Amazon Elastic Block Store (EBS) volumes, setting up replication, running
nightly backups, and so on. In addition, Amazon RDS offers advanced features
including synchronous Multi-AZ replication for high availability, automated
master-slave failover, and read replicas for increased performance. To get
started with Amazon RDS, see Launching a MySQL DB Instance.76

The following are some configuration options that we recommend you
implement when you create your RDS MySQL DB instances:

• DB instance class: Micro instance in development/test environments,
Medium or larger instance in production environments.

• Multi-AZ deployment? No in development/test environments; Yes in
production environments to enable synchronous Multi-AZ replication
and failover. For best performance, always launch production on an RDS
DB instance that is separate from any of your Amazon RDS
development/test DB instances.

• Auto Minor Version Upgrade? Yes, for hands-off upgrades.

• Allocated Storage: 5 GB in development/test environments, 100 GB
minimum in production environments to enable Provisioned IOPS.

• Use Provisioned IOPS? Yes for production environments. Provisioned
IOPS guarantees you a certain level of disk performance, which is
important for large write loads. For more information about PIOPS, see
Amazon RDS Provisioned IOPS Storage to Improve Performance in the
Amazon RDS User Guide.77

• Schedule Amazon RDS backup snapshots and upgrades during your low
player count times, such as early morning. If possible, avoid running

http://docs.amazonwebservices.com/AmazonRDS/latest/GettingStartedGuide/LaunchDBInstance.MySQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#USER_PIOPS

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 28

background jobs or nightly reports during this window, to prevent a
query backlog.

• To find and analyze slow SQL queries in production, ensure you have
enabled the MySQL slow query log in Amazon RDS as shown in the
following list. These settings are configured using Amazon RDS DB
Parameter Groups.78 Note that there is a minor performance penalty for
the slow query log.

o Set slow_query_log = 1 to enable. In Amazon RDS, slow queries
are written to the mysql.slow_log table.

o The value set in long_query_time determines that only queries
that take longer than the specified number of seconds are included.
The default is 10. Consider decreasing this value to 5, 3, or even 1.

o Make sure to periodically rotate the slow query log as described in
Common DBA Tasks for MySQL DB Instances in the Amazon RDS
User Guide.79

As your game grows and your write load increases, resize your RDS DB
instances to scale up. Resizing an RDS DB instance requires some downtime,
but if you deploy it in Multi-AZ mode as you would for production, this is
limited to the time it takes to initiate a failover (typically a few minutes). For
more information, see Modifying a DB Instance Running the MySQL Database
Engine in the Amazon RDS User Guide.80 In addition, you can add one or more
Amazon RDS read replicas to offload reads from your master RDS instance,
leaving more cycles for database writes. For instructions on deploying replicas
with Amazon RDS, see Working with Read Replicas.81

Amazon Aurora
Amazon Aurora is a MySQL-compatible relational database engine that
combines the speed and availability of high-end commercial databases with the
simplicity and cost-effectiveness of open source databases. There are several key
features that Amazon Aurora brings to a gaming workload:

• High performance – Amazon Aurora is designed to provide up to 5x
the throughput of standard MySQL running on the same hardware. This
performance is on par with commercial databases, for a significantly
lower cost. On the largest Amazon Aurora instances, it’s possible to

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://docs.amazonwebservices.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html
http://docs.amazonwebservices.com/AmazonRDS/latest/UserGuide/USER_ModifyInstance.MySQL.html
http://docs.amazonwebservices.com/AmazonRDS/latest/UserGuide/USER_ModifyInstance.MySQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 29

provide up to 500,000 reads and 100,000 writes per second, with 10
millisecond latency between read replicas.

• Data durability – In Amazon Aurora, each 10 GB chunk of your
database volume is replicated six ways across three Availability Zones,
allowing for the loss of two copies of data without affecting database
write availability, and three copies without affecting read availability.
Backups are done automatically and continuously to Amazon S3, which
is designed for 99.999999999% durability with a retention period of up
to 35 days. You can restore your database to any second during the
retention period, up to the last five minutes.

• Scalability – Amazon Aurora is capable of automatically scaling its
storage subsystem out to 64 TB of storage. This storage is automatically
provisioned for you so that you don’t have to provision storage ahead of
time. As an added benefit, this means you pay only for what you use,
reducing the costs of scaling. Amazon Aurora also can deploy up to 15
read replicas in any combination of Availability Zones, including cross-
Region where Amazon Aurora is available. This allows for seamless
failover in case of an instance failure.

The following are some recommendations for using Amazon Aurora in your
gaming workload:

• Use the following DB instance classes: t2.small instance in you
development/test environments and r3.large or larger instance in you
production environment.

• Deploy read replicas in at least one additional Availability Zone to
provide for failover and read operation offloading.

• Schedule Amazon RDS backup snapshots and upgrades during low
player count times. If possible, avoid running jobs or reports against the
database during this window to prevent backlogging.

If your game grows beyond the bounds of a traditional relational database like
MySQL or Amazon Aurora, we recommend that you perform a performance
evaluation, including tuning parameters and sharding. In addition, you should
look at using a NoSQL offering, such as Redis or DynamoDB, to offload some
workloads from MySQL. In the following sections, we’ll cover a few popular
NoSQL offerings.

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 30

Redis
Best described as an atomic data structure server, Redis has some unique
features not found in other databases. Redis provides foundational data types
such as counters, lists, sets, and hashes, which are accessed using a high-speed
text-based protocol. For details on available Redis data types, see the Redis data
type documentation82 and a 15-minute introduction to Redis.83 These unique
data types make Redis an ideal choice for leaderboards, game lists, player
counts, stats, inventories, and similar data. Redis keeps its entire data set in
memory so access is extremely fast. For comparisons with Memcached, see
Redis Benchmarks.84

There are a few caveats concerning Redis that you should be aware of. First, you
need a large amount of physical memory because the entire dataset is memory-
resident (that is, there is no virtual memory support). Replication support is
also simplistic, and debugging tools for Redis are limited. Redis is not suitable
as your only data store. But when used in conjunction with a disk-backed
database, such as MySQL or MongoDB, Redis can provide a highly scalable
solution for game data. Redis plus MySQL is a very popular solution for gaming.

Redis uses minimal CPU, but it uses lots of memory. As a result, it’s best suited
to high-memory instances, such as the Amazon EC2 memory optimized instance
family (that is, r3.*). AWS offers a fully-managed Redis service, Amazon
ElastiCache for Redis.85 ElastiCache for Redis can handle clustering, master-
slave replication, backups, and many other common Redis maintenance tasks.
For a deep dive on getting the most out of ElastiCache, see the AWS whitepaper
Performance at Scale with Amazon ElastiCache.86

MongoDB
MongoDB is a document-oriented database, which means that data is stored in
a nested data structure, similar to a structure you would use in a typical
programming language. MongoDB uses a binary variant of JSON called BSON
for communication, which makes programming against it a matter of storing
and retrieving JSON structures. This has made MongoDB very popular for
games and web applications, since server APIs are usually JSON too.

MongoDB also offers a number of interesting hybrid features, including a SQL-
like syntax that enables you to query data by range and composite conditions.

http://redis.io/topics/data-types
http://redis.io/topics/data-types
http://redis.io/topics/data-types-intro
http://redis.io/topics/benchmarks
https://aws.amazon.com/elasticache/redis/
https://aws.amazon.com/elasticache/redis/
https://d0.awsstatic.com/whitepapers/performance-at-scale-with-amazon-elasticache.pdf

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 31

MongoDB supports atomic operations such as increment/decrement and
add/remove from list; this is similar to Redis support for these operations. For
examples of atomic operations that MongoDB supports, see the MongoDB
documentation on findAndModify87 and the MongoDB Cookbook88.

MongoDB is widely used as a primary data store for games, and is frequently
used in conjunction with Redis, since the two complement each other well.
Transient game data, sessions, leaderboards, and counters are kept in Redis,
and then progress is saved to MongoDB at logical points (for example, at the
end of a level or when a new achievement is unlocked). Redis yields high-speed
access for latency-sensitive game data, and MongoDB provides simplified
persistence.

MongoDB supports native replication and sharding as well, although you do
have to configure and monitor these features yourself. For an in-depth look at
deploying MongoDB on AWS, see the AWS whitepaper MongoDB on AWS.89

Amazon DynamoDB
Finally, DynamoDB is a fully managed NoSQL solution provided by AWS.
DynamoDB manages tasks such as synchronous replication and IO provisioning
for you, in addition to automatic scaling and managed caching. DynamoDB uses
a Provisioned Throughput model, where you specify how many reads and writes
you want per second, and the rest is handled for you under the hood.90 Library
support for DynamoDB is provided for many languages, including Ruby AWS
SDK,91 Java AWS SDK,92 and the AWS-supported Python Boto Library.93

To set up DynamoDB, see the Getting Started Guide.94 Games frequently use
DynamoDB features in the following ways:

• Key-value store for user data, items, friends, and history.

• Range key store for leaderboards, scores, and date-ordered data.

• Atomic counters for game status, user counts, and matchmaking.

Like MongoDB and MySQL, DynamoDB can be paired with a technology such
as Redis to handle real-time sorting and atomic operations. Many game
developers find DynamoDB to be sufficient on its own, but the point is you still
have the flexibility to add Redis or a caching layer to a DynamoDB-based

http://docs.mongodb.org/manual/reference/command/findAndModify/
http://docs.mongodb.org/manual/reference/command/findAndModify/
http://cookbook.mongodb.org/patterns/votes/
https://d0.awsstatic.com/whitepapers/AWS_NoSQL_MongoDB.pdf
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/AWSRubySDK/latest/frames.html
http://docs.aws.amazon.com/AWSRubySDK/latest/frames.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html
http://boto.readthedocs.org/en/latest/dynamodb_tut.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 32

architecture. Let’s revisit our reference diagram with DynamoDB to see how it
simplifies the architecture.

Figure 4: A fully production-ready game backend
running on AWS using DynamoDB

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 33

Table Structure and Queries
DynamoDB, like MongoDB, is a loosely structured NoSQL data store that allows
you to save different sets of attributes on a per-record basis. You only need to
predefine the primary key strategy you’re going to use:

• Partition key – The partition key is a single attribute that DynamoDB
uses as input to an internal hash function. This could be a player name,
game ID, UUID, or similar unique key. Amazon DynamoDB builds an
unordered hash index on this key.

• Partition key and sort key – Referred to as a composite primary key,
this type of key is composed of two attributes: the partition key and the
sort key. DynamoDB uses the partition key value as input to an internal
hash function, and all items with the same partition key are stored
together, in sorted order by sort key value. For example, you could store
game history as a duplet of [user_id, last_login]. Amazon
DynamoDB builds an unordered hash index on the partition key
attribute, and a sorted range index on the sort key attribute. Only the
combination of both keys is unique in this scenario.

For best querying performance, you should maintain each DynamoDB table at a
manageable size. For example, if you have multiple game modes, it’s better to
have a separate leaderboard table for each game mode, rather than a single
giant table. This also gives you the flexibility to scale your leaderboards
separately, in the event that one game mode is more popular than the others.

Provisioned Throughput
DynamoDB shards your data behind the scenes to give you the throughput
you’ve requested. DynamoDB uses the concept of read and write units. One read
capacity unit represents one strongly consistent read per second, or two
eventually consistent reads per second, for an item up to 4 KB in size. One write
capacity unit represents one write per second for an item up to 1 KB in size. The
defaults are 5 read and 5 write units, which means 20 KB of strongly consistent
reads/second and 5 KB of writes/second. You can increase your read and or
write capacity at any time by any amount up to your account limits. You can also
decrease the read and or write capacity by any amount but this can’t exceed
more than four decreases in one day. Scaling can be done using the AWS
Management Console or CLI by selecting the table and modifying it
appropriately. You can also take advantage of DynamoDB Auto Scaling by using
the Auto Scaling service to dynamically adjust provisioned throughput capacity

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 34

on your behalf, in response to actual traffic patterns.95 DynamoDB Auto Scaling
works in conjunction with Amazon CloudWatch alarms that monitor the
capacity units. It scales according to your defined rules.

There is a delay before the new provisioned throughput is available, while data
is repartitioned in the background. This doesn’t cause downtime, but it does
mean that the DynamoDB scaling is best suited for changes over time, such as
the growth of a game from 1,000 to 10,000 users. It isn’t designed to handle
hourly user spikes. For this, as with other databases, you need to leverage some
form of caching to add resiliency.

To get the best performance from DynamoDB, make sure your reads and writes
are spread as evenly as possible across your keys. Using a hexadecimal string
such as a hash key or checksum is one easy strategy to inject randomness. For
more details on optimizing DynamoDB performance, see Best Practices for
DynamoDB96 in the Amazon DynamoDB Developer Guide, and Optimizing
Provisioned Throughput in Amazon DynamoDB97 on the AWS Blog.

Amazon DynamoDB Accelerator (DAX)
DAX allows you to provision a fully-managed, in-memory cache for DynamoDB
that speeds up the responsiveness of your DynamoDB tables from millisecond-
scale latency to microseconds. This acceleration comes without requiring any
major changes in your game code, which simplifies deployment into your
architecture. All you have to do is re-initialize your DynamoDB client with a new
endpoint that points to DAX and the rest of the code can remain untouched.
DAX handles cache invalidation and data population without your intervention.
This cache can help speed responsiveness when running events that might cause
a spike in players, such as a seasonal DLC offering, or a new patch release.

Other NoSQL Options
There are a number of other NoSQL alternatives, including Riak, Couchbase,
and Cassandra. You can use any of these for gaming, and there are examples of
gaming companies using them on AWS with success. As with choosing a server
programming language, there is no perfect database—you need to weigh the
pros and cons of each one.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
http://aws.typepad.com/aws/2012/09/optimizing-provisioned-throughput-in-amazon-dynamodb.html
http://aws.typepad.com/aws/2012/09/optimizing-provisioned-throughput-in-amazon-dynamodb.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 35

Caching
For gaming, adding a caching layer in front of your database for frequently used
data can alleviate a significant number of scalability problems. Even a short-
lived cache of just a few seconds for data such as leaderboards, friend lists, and
recent activity can greatly offload your database. Adding cache servers is also
cheaper than adding additional database servers, so it also lowers your AWS
costs.

Memcached is a high-speed, memory-based key-value store that is the gold
standard for caching.98 In recent years, Redis has also become extremely
popular because it features similar performance to Memcached, plus Redis has
advanced data types.99 Both options perform well on AWS. You can choose to
install Memcached or Redis on EC2 instances yourself, or you can leverage
Amazon ElastiCache,100 the AWS managed caching service. Like Amazon RDS
and DynamoDB, ElastiCache completely automates the installation,
configuration, and management of Memcached and Redis on AWS. For more
details on setting up ElastiCache, see Getting Started with Amazon ElastiCache
in the Amazon ElastiCache User Guide.101

ElastiCache groups servers in a cluster to simplify management. Most
ElastiCache operations like configuration, security, and parameter changes are
performed at the cache cluster level. Despite the use of the cluster terminology,
ElastiCache nodes do not talk to each other or share cache data. ElastiCache
deploys the same versions of Memcache and Redis that you would download
yourself, so existing client libraries written in Ruby, Java, PHP, Python, and so
on are completely compatible with ElastiCache.

The typical approach to caching is known as lazy population or cache aside. This
means that the cache is checked, and if the value is not in cache (a cache miss),
the record is retrieved, stored in cache, and returned. The following Python
example checks ElastiCache for a value, queries the database if the cache doesn’t
have it, and then stores the value back to ElastiCache for subsequent queries.

http://memcached.org/
http://redis.io/
http://aws.amazon.com/elasticache/
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/GettingStarted.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 36

cache = memcached.Client(["mycache...cache.amazonaws.com:11211"])
def get_user(user_id):
 record = cache.get(user_id)
 if record is None:
 # Run a DB query
 record = db.query("select * from users where id = ?",
user_id)
 cache.set(user_id, record)
 return record

Lazy population is the most prevalent caching strategy because it only populates
the cache when a client actually requests the data. This way it avoids extraneous
writes to the cache in the case of records that are infrequently (or never)
accessed, or that change before being read. This pattern is so ubiquitous that
most major web development frameworks such as Rails, Django, and Grails
include plugins that wrap this strategy. The downside to this strategy is that
when data changes, the next client that requests it incurs a cache miss, which
means that their response time is slower because the new record needs to be
queried from the database and populated into cache.

This downside leads us to the second most prevalent caching strategy. For data
that you know will be accessed frequently, populate the cache when records are
saved to avoid unnecessary cache misses. This means that client response times
will be faster and more uniform. In this case, you simply populate the cache
when you update the record, rather than when the next client queries it. The
tradeoff here is that it could result in an unnecessarily high number of cache
writes if your data is changing rapidly. In addition, writes to the database can
appear slower to users, since the cache also needs to be updated.

cache = memcached.Client(["mycache...cache.amazonaws.com:11211"])
def update_username(record):
 # Run a DB query
 record = db.query("update users set name = record.user_name
where id = ?", record.user_id)

 cache.set(record.user_id, record)

 return record

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 37

To choose between these two strategies you need to know how often your data is
changing versus how often it's being queried.

The final popular caching alternative is a timed refresh. This is beneficial for
data feeds that span multiple different records, such as leaderboards or friend
lists. In this strategy, you would have a background job that queries the
database and refreshes the cache every few minutes. This decreases the write
load on your cache, and enables additional caching to happen upstream (for
example, at the CDN layer) because pages remain stable longer.

Amazon ElastiCache Scaling
ElastiCache simplifies the process of scaling your cache instances up and down.
ElastiCache provides access to a number of Memcached metrics in CloudWatch
at no additional charge. For a list, see Monitoring Use with CloudWatch Metrics
in the Amazon ElastiCache User Guide.102 You should set CloudWatch alarms
based on these metrics to alert you to cache performance issues.103 You can
configure these alarms to send emails when the cache memory is almost full, or
when cache nodes are taking a long time to respond. We recommend that you
monitor the following metrics:

• CPUUtilization – How much CPU Memcached or Redis is using. Very
high CPU could indicate an issue.

• Evictions – Number of keys that have to be forced out of memory due
to lack of space. Should be zero. If it’s not near zero, you need a larger
ElastiCache instance.

• GetHits/CacheHits and GetMisses/CacheMisses – How
frequently does your cache have the keys you need? The higher
percentage of hits, the more you’re offloading your database.

• CurrConnections – The number of clients that are currently
connected (this depends on the application).

In general, monitoring hits, misses, and evictions is sufficient for most
applications. If the ratio of hits to misses is too low, you should revisit your
application code to make sure your cache code is working as expected. As
mentioned, typically evictions should be zero 100 percent of the time. If
evictions are nonzero, either scale up your ElastiCache nodes to provide more
memory capacity or revisit your caching strategy to ensure you’re only caching
what you need to cache. For more details on managing these parameters and

http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheMetrics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 38

monitoring, see Parameters and Parameter Groups104 and Which Metrics
Should I Monitor?105 in the Amazon ElastiCache User Guide.

Additionally, you can configure your cache node cluster to span multiple
Availability Zones to provide high availability for your game’s caching layer.
This ensures that in the event of an Availability Zone being unavailable, your
database is not overwhelmed by a sudden spike in requests. When creating a
cache cluster or adding nodes to an existing cluster, you can chose the
Availability Zones for the new nodes. You can either specify the requested
amount of nodes in each Availability Zone or select the option to spread nodes
across zones.

With Amazon ElastiCache for Redis you can create a read replica in another
Availability Zone. Upon a failure of the primary node, AWS provisions a new
primary node. In scenarios where the primary node cannot be provisioned, you
can decide which read replica to promote to be the new primary.

ElastiCache for Redis also supports Sharded Cluster with supported Redis
Engines version 3 or higher. You can create clusters with up to 15 shards,
expanding the overall in-memory data store to more than 3.5 TiB. Each shard
can have up to 5 read replicas, giving you the ability to handle 20 million reads
and 4.5 million writes per second.

The sharded model, in conjunction with the read replicas, improves overall
performance and availability. Data is spread across multiple nodes and the read
replicas support rapid, automatic failover in the event that a primary node has
an issue.

To take advantage of the sharded model, you must use a Redis client that is
cluster-aware. The client will treat the cluster as a hash table with 16,384 slots
spread equally across the shards, and will then map the incoming keys to the
proper shard. ElastiCache for Redis treats the entire cluster as a unit for backup
and restore purposes. You don’t have to think about or manage backups for the
individual shards.

Binary Game Content with Amazon S3
Your database is responsible for storing user data, including accounts, stats,
items, purchases, and so forth. But for game-related binary data, Amazon S3 is a

http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheParameterGroups.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheMetrics.WhichShouldIMonitor.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheMetrics.WhichShouldIMonitor.html
http://aws.amazon.com/s3/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 39

better fit.106 Amazon S3 provides a simple HTTP-based API to PUT (upload)
and GET (download) files. With Amazon S3, you pay only for the amount of
data that you store and transfer. Using Amazon S3 consists of creating a bucket
to store your data in, and then making HTTP requests to and from that bucket.
For a walkthrough of the process, see Create a Bucket in the Amazon S3 Getting
Started Guide.107

Amazon S3 is ideally suited for a variety of gaming use cases, including the
following:

• Content downloads – Game assets, maps, patches, and betas

• User-generated files – Photos, avatars, user-created levels, and
device backups

• Analytics – Storing metrics, device logs, and usage patterns

• Cloud saves – Game save data and syncing between devices

While you could theoretically store this type of data in a database, using
Amazon S3 has a number of advantages, including the following:

• Storing binary data in a DB is memory and disk intensive, consuming
valuable query resources.

• Clients can directly download the content from Amazon S3 using a
simple HTTP/S GET.

• Designed for 99.999999999% durability and 99.99% availability of
objects over a given year.

• Amazon S3 natively supports features such as ETag, authentication, and
signed URLs.

• Amazon S3 plugs into the CloudFront CDN for distributing content to
large numbers of clients.108

With these factors in mind, let’s look at the aspects of Amazon S3 that are most
relevant for gaming.

Content Delivery and Amazon CloudFront
Downloadable content (DLC) is a huge aspect of modern games from an
engagement perspective, and it is becoming a primary revenue stream. Users

http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
http://aws.amazon.com/cloudfront/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 40

expect an ongoing stream of new characters, levels, and challenges for months—
if not years—after a game’s release. Being able to deliver this content quickly
and cost-effectively has a big impact on the profitability of a DLC strategy.

Although the game client itself is typically distributed through a given
platform’s App Store, pushing a new version of the game just to make a new
level available can be onerous and time consuming. Promotional or time-limited
content, such as Halloween-themed assets or a long weekend tournament, are
usually easier to manage yourself, in a workflow that mirrors the rest of your
server infrastructure.

If you’re distributing content to a large number of clients (for example, a game
patch, expansion, or beta), we recommend that you use Amazon CloudFront in
front of Amazon S3.109 CloudFront has points of presence (POPs) located
throughout the world, which improves download performance. In addition, you
can configure which Regions CloudFront serves to optimize your costs. For
more information, see the CloudFront FAQ,110 in particular How does
CloudFront lower my costs.

Finally, if you anticipate significant CloudFront usage, you should contact our
CloudFront sales team because Amazon offers reduced pricing that is even
lower than our on-demand pricing for high-usage customers.111

Easy Versioning with ETag
As mentioned earlier, Amazon S3 supports HTTP ETag and the If-None-Match
HTTP header, which are well known to web developers but frequently
overlooked by game developers.112 These headers enable you to send a request
for a piece of Amazon S3 content, and include the MD5 checksum of the version
you already have. If you already have the latest version, Amazon S3 responds
with an HTTP 304 Not Modified, or HTTP 200 along with the file data, if you
need it. For an overview of this call flow, see typical usage of HTTP ETag on the
Wikipedia website.113

Leveraging ETag in this manner makes any future use of CloudFront more
powerful because CloudFront also supports the Amazon S3 ETag. For more
information, see Request and Response Behavior for Amazon S3 Origins in the
Amazon CloudFront Developer Guide.114

http://aws.amazon.com/cloudfront/
http://aws.amazon.com/cloudfront/faqs/
http://aws.amazon.com/contact-us/aws-sales/
http://aws.amazon.com/contact-us/aws-sales/
http://en.wikipedia.org/wiki/HTTP_ETag
http://en.wikipedia.org/wiki/HTTP_ETag#Typical_usage
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/RequestAndResponseBehaviorS3Origin.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 41

Finally, you also have the ability to Geo Target or Restrict access to your content
through CloudFront’s Geo Targeting feature. Amazon CloudFront detects the
country where your customers are located and will forward the country code to
your origin servers. This allows your origin server to determine the type of
personalized content that will be returned to the customer based on their
geographic location. This content could be anything from a localized dialog file
for an RPG to localized asset packs for your game.

Uploading Content to Amazon S3
Our other gaming use cases for Amazon S3 revolve around uploading data from
the game, be it user-generated content, analytics, or game saves. There are two
strategies for uploading to Amazon S3: either upload directly to Amazon S3
from the game client, or upload by first posting to your REST API servers, and
then have your REST servers upload to Amazon S3. While both methods work,
we recommend uploading directly to Amazon S3 if possible, since this offloads
work from your REST API tier.

Uploading directly to Amazon S3 is straightforward, and can even be
accomplished directly from a web browser. For more information, see Browser-
Based Uploads Using POST (AWS Signature Version 2) in the Amazon S3
Developer Guide.115 To protect against corruption, you should also consider
calculating an MD5 checksum of the file, and including it in the Content-MD5
header. This will enable Amazon S3 to automatically verify the file was not
corrupted during upload. For more information, see PUT Object in the Amazon
S3 API Reference.116

User-generated content (UGC) is a great use case for uploading data to Amazon
S3. A typical piece of UGC has two parts: binary content (for example, a graphic
asset), and its metadata (for example, name, date, author, tags, etc.). The usual
pattern is to store the binary asset in Amazon S3, and then store the metadata in
a database. Then, you can use the database as your master index of available
UGC that others can download.

The following figure shows an example call flow that you can use to upload UGC
to Amazon S3.

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingHTTPPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingHTTPPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 42

Figure 5: A simple workflow for transfer of game content

In this example, first you PUT the binary game asset (for example, avatar, level,
etc.) to Amazon S3, which creates a new object in Amazon S3. After you receive
a success response from Amazon S3, you make a POST request to our REST API
layer with the metadata for that asset. The REST API needs to have a service
that accepts the Amazon S3 key name, plus any metadata you want to keep, and
then it stores the key name and the metadata in the database. The game’s other
REST services can then query the database to find new content, popular
downloads, and so on.

This simple call flow handles the case where the asset data is stored verbatim in
Amazon S3, which is usually true of user-generated levels or characters. This
same pattern works for game saves as well—store the game save data in Amazon
S3, and then index it in your database by user_id, date, and any other important
metadata. If you need to do additional processing of an Amazon S3 upload (for
example, generating preview thumbnails), make sure to read the section on
Asynchronous Jobs later in this paper. In that section, we’ll discuss adding
Amazon SQS to queue jobs to handle these types of tasks.

Analytics and A/B Testing
Collecting data about your game is one of the most important things you can do,
and one of the easiest as well. Perhaps the trickiest part is deciding what to
collect. Because Amazon S3 storage is cheap, you should consider keeping track
of any reasonable metrics you can think of for a user (for example, total hours
played, favorite characters or items, current and highest level, etc.) if you aren’t
sure what to measure, or if you have a client that is not updated easily.

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 43

However, if you are able to formulate questions that you want answered
beforehand or if client updates are easy, you can focus on gathering the data
that help you answer those specific questions.

After you’ve identified the data, follow these steps to track it:

1. Collect metrics in a local data file on the user’s device (for example,
mobile, console, PC, etc.). To make things easier later, we recommend
using a CSV format and a unique filename. For example, a given user
might have their data tracked in 241-game_name-user_id-
YYYYMMDDHHMMSS.csv or something similar.

2. Periodically persist the data by having the client upload the metrics file
directly to Amazon S3. Or you can integrate with Amazon Kinesis and
adopt a loosely coupled architecture, as we discussed previously.117
When you go to upload a given data file to Amazon S3, open a new local
file with a new file name. This keeps the upload loop simple.

3. For each file you upload, put a record somewhere indicating that there’s a
new file to process. Amazon S3 event notifications provide an excellent
way to support this.118 To enable notifications, you must first add a
notification configuration identifying the events you want Amazon S3 to
publish, such as a file upload, and the destinations where you want
Amazon S3 to send the event notifications. We recommend Amazon SQS
because you can then have a background worker listening to Amazon
SQS for new files, and processing them as they arrive. For more details,
see the Amazon SQS section later in this paper.

4. As part of a background job, process the data using a framework such as
Amazon EMR, or other framework that you choose to run on Amazon
EC2.119 This background process can look at new data files that have
been uploaded since the last run, and perform aggregation or other
operations on the data. (Note that if you’re using Amazon EMR, you
might not need step #3 because Amazon EMR has built-in support for
streaming new files.)

5. Optionally, feed the data into Amazon Redshift for additional data
warehousing and analytics flexibility.120 Amazon Redshift is an ANSI
SQL-compliant, columnar data warehouse that you pay for by the hour.
This enables you to perform queries across large volumes of data, such
as sums and min/max using familiar SQL-compliant tools.

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingHTTPPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingHTTPPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/redshift/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 44

Repeat these steps in a loop, uploading and processing data asynchronously.

The following figure shows how this pattern works.

Figure 6: A simple pipeline for analytics and A/B testing

For both analytics and A/B testing, the data flow tends to be unidirectional.
That is, metrics flow in from users, are processed, and then a human makes
decisions that affect future content releases or game features. Using A/B testing
as an example, when you present users with different items, screens, and so
forth, you can make a record of the choice they were given, along with their
subsequent actions (for example, purchase, cancel, etc.). Then, periodically
upload this data to Amazon S3, and use Amazon EMR to create reports. In the
simplest use case, you could just generate cleaned up data from Amazon EMR in
CSV format into another Amazon S3 bucket, and then load this into a
spreadsheet program.

A proper treatment of analytics and Amazon EMR is beyond the scope of this
paper. For more information, see AWS Big Data121 and the AWS whitepaper
Best Practices for Amazon EMR.122 To contact us, please fill out the form at the
AWS for Game Developers website.

http://aws.amazon.com/big-data/
https://d0.awsstatic.com/whitepapers/aws-amazon-emr-best-practices.pdf
https://aws.amazon.com/gaming/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 45

Amazon Athena
Gleaning insights quickly and cheaply is one of the best ways that developers
can improve on their games. Traditionally this has been relatively difficult
because data normally has to be extracted from game application servers, stored
somewhere, transformed, and then loaded into a database in order to be queried
later. This process can take a significant amount of time and compute resources,
greatly increasing the cost of running such tasks.

Amazon Athena assists with your analytical pipeline by providing the means of
querying data stored in Amazon S3 using standard SQL. Because Athena is
serverless, there is no infrastructure to provision or manage, and generally there
is no requirement to transform data before applying a schema to start querying.
There are however a few things to keep in mind to optimize performance while
using Athena for your queries, including the following:

• Using Athena for ad-hoc queries – Because Athena is priced at a
base of $5 per TB of data scanned, this means that you incur no charges
when there aren’t any queries being run. Athena is ideally suited for
running queries on an ad-hoc basis when information needs to be
gleaned from data quickly without running an extract, transform, and
load (ETL) process first.

• Proper partitioning – Partitioning data divides tables into parts that
keep related entries together. Partitions act as virtual columns. You
define them at table creation, and they can help reduce the amount of
data scanned per query, thereby improving performance and reducing
the cost of any particular query. You can restrict the amount of data
scanned by a query by specifying filters based on the partition. For
example in the following query:

SELECT count(*) FROM lineitem WHERE l_gamedate = '2017-02-01'

A non-partitioned table would have to scan the entire table, looking
through potentially millions of records, and gigabytes of data, slowing
down the query, and adding unnecessary cost. A properly partitioned
table can help speed queries, and significantly reduce cost by cutting the
amount of data queried by Athena. For a detailed example, see Top 10
Performance Tuning Tips for Amazon Athena on the AWS Big Data
Blog.123

https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 46

• Compression – Just like partitioning, proper compression of data can
help reduce network load and costs by reducing data size. It’s also best
to make sure that the compression algorithm you choose allows for
splittable files so Athena’s execution engine can increase parallelism for
additional performance.

• Understanding Presto – Because Athena uses Presto, an open source
distributed SQL query engine for running interactive analytic queries
against data sources of all sizes ranging from gigabytes to petabytes, an
under the covers understanding Presto can help you to optimize the
various queries that you run on Athena. For example, the ORDER BY
clause returns the results of a query in sort order. To do the sort, Presto
must send all rows of data to a single worker and then sort them. This
could cause memory pressure on Presto, which could cause the query to
take a long time to execute. Worse, the query could fail. If you are using
the ORDER BY clause to look at the top or bottom N values, then use a
LIMIT clause to reduce the cost of the sort significantly by pushing the
sorting and limiting to individual workers, rather than the sorting being
done in a single worker.

Amazon S3 Performance Considerations
Amazon S3 can scale to tens of thousands of PUTs and GETs per second. To
achieve this scale, there are a few guidelines you need to follow to get the best
performance out of Amazon S3. First, as with DynamoDB, make sure that your
Amazon S3 key names are evenly distributed because Amazon S3 determines
how to partition data internally based on the first few characters in the key
name.

Let's assume your bucket is called mygame-ugc and you store files based on a
sequential database ID:

http://mygame-ugc.s3.amazonaws.com/10752.dat
http://mygame-ugc.s3.amazonaws.com/10753.dat
http://mygame-ugc.s3.amazonaws.com/10754.dat
http://mygame-ugc.s3.amazonaws.com/10755.dat

In this case, all of these files would likely live in the same internal partition
within Amazon S3 because the keys all start with 107. This limits your

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 47

scalability, because it results in writes that are sequentially clustered together. A
simple solution is to use a hash function to generate the first part of the object
name, in order to randomize the distribution of names. One easy strategy is to
use an MD5 or SHA1 of filename and prefix the Amazon S3 key with that, as
shown in the following code example:

http://mygame-ugc.s3.amazonaws.com/988-10752.dat
http://mygame-ugc.s3.amazonaws.com/483-10753.dat
http://mygame-ugc.s3.amazonaws.com/d5d-10754.dat
http://mygame-ugc.s3.amazonaws.com/06f-10755.dat

Here’s a variation with a Python SHA1 example:

#!/usr/bin/env python
import hashlib
sha1 = hashlib.sha1(filename).hexdigest()[0:3]
path = sha1 + "-" + filename

For more information about maximizing S3 performance, see Request Rate and
Performance Considerations in the Amazon S3 Developer Guide.124 If you
anticipate a particularly high PUT or GET load, file an AWS Support Ticket so
we can ensure your buckets are well architected.125

Loosely Coupled Architectures with
Asynchronous Jobs
Loosely coupled architectures that involve decoupling components refers to the
concept of designing your server components so that they can operate as
independently as possible. A common approach is to put queues between
services, so that a sudden burst of activity on one part of your system doesn’t
cascade to other parts. Some aspects of gaming are difficult to decouple, because
data needs to be as up-to-date as possible to provide a good matchmaking and
gameplay experience for players. However, most data, such as cosmetic or
character data, doesn’t have to be up-to-the-millisecond.

http://docs.aws.amazon.com/AmazonS3/latest/dev/request-rate-perf-considerations.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/request-rate-perf-considerations.html
http://aws.amazon.com/premiumsupport/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 48

Leaderboards and Avatars
Many gaming tasks can be decoupled and handled in the background. For
example, the task of a user updating his stats needs to be done in real time, so
that if a user exits and then re-enters the game, they won’t lose progress.
However, re-ranking the global top 100 leaderboard doesn’t need to be done
every time a user posts a new high score. Most users appear far down the
leaderboard. Instead, the ranking process could be decoupled from score
posting, and performed in the background every few minutes. This would have
minimal impact on the game experience because game ranks are highly volatile
in any active online game.

As another example, consider allowing users to upload a custom avatar for their
character. In this case, your frontend servers put a message into a queue such as
Amazon SQS about the new avatar upload. You write a background job that runs
periodically, pulls avatars off the queue, processes them, and marks them as
available in MySQL, Aurora, DynamoDB, or whatever database you’re using.
The background job runs on a different set of EC2 instances, which can be set
up to auto scale just like your front-end servers. To help you get started quickly,
Elastic Beanstalk provides worker environments that simplify this process by
managing the Amazon SQS queue and running a daemon process on each
instance that reads from the queue for you.126

This approach is a very effective way to decouple your frontend servers from
backend processing, and it enables you to scale the two independently. For
example, if the image resizing is taking too long, you can add additional job
instances, without needing to scale your REST servers too.

The rest of this section focuses on Amazon SQS. Note that you could implement
this pattern with an alternative such as RabbitMQ or Apache ActiveMQ
deployed to Amazon EC2 instead.

Amazon SQS
Amazon SQS is a fully managed queue solution with a long-polling HTTP API.127
This makes it easy to interface with regardless of the server languages you’re
using. To get started with Amazon SQS, see Getting Started with Amazon SQS in
the Amazon SQS Developer Guide.128 Here are a few tips to best leverage
Amazon SQS:

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features-managing-env-tiers.html
http://aws.amazon.com/sqs/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 49

• Create your SQS queues in the same Region as your API servers, to make
writes as fast as possible. Your asynchronous job workers can live in any
Region because they are not time-dependent. This enables you to run
API servers in Regions near your users and job instances in more
economical Regions.

• Amazon SQS is designed to scale horizontally. A given Amazon SQS
client can process about 50 requests a second. The more Amazon SQS
client processes you add, the more messages you can process
concurrently. For tips on adding additional worker processes and EC2
instances, see Increasing Throughput with Horizontal Scaling and
Batching in the Amazon SQS Developer Guide.129

• Consider using Amazon EC2 Spot Instances for your job workers to save
money.130 Amazon SQS is designed to redeliver messages that aren’t
explicitly deleted, which protects against EC2 instances going away mid-
job. Make sure to delete messages only after you have completed
processing them. This enables another EC2 instance to retry the job if a
given instance fails while running.

• Related to deletion is message visibility. Basically, think of this as the
redelivery time if a message is not deleted. The default is 30 seconds.
You might need to increase this if you have long-running jobs, to avoid
multiple queue readers from receiving the same message.

• Amazon SQS also supports dead-letter queues. A dead-letter queue is a
queue that other (source) queues can target for messages that can't be
processed (consumed) successfully. You can set aside and isolate these
messages in the dead-letter queue to determine why their processing
doesn't succeed.

In addition, Amazon SQS has the following caveats:

• Messages are not guaranteed to arrive in order. You might receive
messages in random order (for example, 2, 3, 5, 1, 7, 6, 4, 8). If you need
strict ordering of messages, look at the FIFO queues section below.

• Messages typically arrive quickly, but occasionally a message might be
delayed by a few minutes.

• Messages can be duplicated and it's the responsibility of the client to
deduplicate.

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/throughput.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/throughput.html
http://aws.amazon.com/ec2/spot-instances/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 50

Taken together, this means that you need to make sure your asynchronous jobs
are coded to be idempotent and resilient to delays.131 Resizing and replacing an
avatar is a good example of Idempotence because doing that twice would yield
the same result.

Finally, if your job workload scales up and down over time (for example,
perhaps more avatars are uploaded when more users are online), consider using
Auto Scaling to Launch Spot Instances.132 Amazon SQS offers a number of
metrics that you can auto scale on, the best being
ApproximateNumberOfMessagesVisible. The number of visible messages is
basically your queue backlog. For example, depending on how many jobs you
can process each minute, you could scale up if this hits 100 and then scale back
down when it falls below 10. For more information about Amazon SQS and
Amazon SNS metrics, see Amazon SNS Metrics and Dimensions and Amazon
SQS Metrics and Dimensions in the Amazon CloudWatch User Guide.133

FIFO Queues
While the recommended method of using Amazon SQS is to engineer and
architect for your application to be resilient to duplication and misordering, you
might have certain tasks where the ordering of messages is absolutely critical to
proper functioning and duplicates can’t be tolerated. For example,
microtransactions where a user wants to buy a particular item once, and only
once, and this action must be strictly regulated.

To supplement this requirement, First-In-First-Out (FIFO) queues are available
in select AWS Regions. FIFO queues provide the ability to process messages
both in order, and exactly once. There are additional limitations when working
with FIFO queues due to the emphasis on message order and delivery. For more
details about FIFO queues, see FIFO (First-In-First-Out) Queues in the Amazon
SQS Developer Guide.134

Other Queue Options
In addition to Amazon SQS and Amazon SNS, there are dozens of other
approaches to message queues that can run effectively on Amazon EC2, such as
RabbitMQ, ActiveMQ, and Redis. With all of these, you are responsible for
launching a set of EC2 instances and configuring them yourself, which is outside
the scope of this paper. Keep in mind that running a reliable queue is much like
running a highly available database: you need to consider high-throughput disk

http://en.wikipedia.org/wiki/Idempotence
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/US-SpotInstances.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/US-SpotInstances.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/sns-metricscollected.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/sqs-metricscollected.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/sqs-metricscollected.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 51

(such as Amazon EBS PIOPS), snapshots, redundancy, replication, failover, and
so forth. Ensuring the uptime and durability of a custom queue solution can be
a very time-consuming task, and can fail at the worst times like during your
highest load peaks.

Cost of the Cloud
With AWS you no longer need to dedicate valuable resources to building costly
infrastructure, including purchasing servers and software licenses, or leasing
facilities. With AWS you can replace large upfront expenses with lower variable
costs and pay only for what you use and for as long as you need it. All AWS
services are available on demand, and don’t require long-term contracts or
complex licensing dependencies. Some of the advantages of AWS include the
following:

• On-Demand Instances – AWS offers a pay-as-you-go approach for
over 70 cloud services, enabling game developers to deploy both quickly
and cheaply as their game gains users. Like the utilities that provide
power or water, you pay only what you consume, and once you stop
using them, there are no additional costs.

• Reserved Instances – Some AWS services like Amazon EC2 allow you
to enter into a 1 or 3 year agreement in order to gain additional savings
on the on-demand cost of these services. With Amazon EC2 in
particular, you can choose to pay either no upfront cost for an exchange
in reduced hourly cost, or pay all upfront for additional savings over the
year (no hourly costs).

• Spot Instances – Amazon EC2 Spot Instances enable you to bid on
spare Amazon EC2 capacity as a method of significantly reducing your
computing spend. Spot Instances are great for applications that are
tolerant to workload interruptions; some use cases include batch
processing and analytics pipelines that aren’t critical to your primary
game functioning.

• Serverless model – Some other services like AWS Lambda are more
granular in their approach to pricing.135 Instead of being pay-by-the-
hour, they are billed in either very small units of time like milliseconds,
or by request count instead of time. This allows you to truly pay for only
what you use, instead of leaving a service up, but idle and accruing costs.

https://aws.amazon.com/lambda/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 52

Conclusion and Next Steps
We've covered a lot of ground in this whitepaper. Let's revisit the major
takeaways and some simple steps you can take to begin your game’s journey on
AWS:

• Start simple, with two EC2 instances behind an ELB load balancer.
Choose either Amazon RDS or DynamoDB as your database. Consider
using Elastic Beanstalk to manage this backend stack.

• Store binary content such as game data, assets, and patches on Amazon
S3. Using Amazon S3 offloads network-intensive downloads from your
game servers. Consider CloudFront if you’re distributing these assets
globally.

• Always deploy your EC2 instances and databases to multiple Availability
Zones for best availability. This is as easy as splitting your instances
across two Availability Zones to begin with.

• Add caching via ElastiCache as your server load grows. Create at least
one ElastiCache node in each Availability Zone where you have
application servers.

• As load continues to grow, offload time-intensive operations to
background tasks by leveraging Amazon SQS or another queue such as
RabbitMQ. This enables your EC2 app instances and database to handle
a higher number of concurrent players.

• If database performance becomes an issue, add read replicas to spread
the read/write load out. Evaluate whether a NoSQL store such as
DynamoDB or Redis could be added to handle certain database tasks.

• At extreme loads, advanced strategies such as event-driven servers or
sharded databases might become necessary. However, wait to
implement these unless absolutely necessary, since they add complexity
to development, deployment, and debugging.

Finally, remember that Amazon Web Services has a team of business and
technical people dedicated to supporting our gaming customers. To contact us,
please fill out the form at the AWS for Game Developers website.136

https://aws.amazon.com/gaming/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 53

Contributors
The following individuals and organizations contributed to this document:

• Dhruv Thukral, Senior Solutions Architect, Amazon Web Services

• Greg McConnel, Senior Solutions Architect, Amazon Web Services

• Brent Nash, Senior Software Dev Engineer, Amazon Game Studios

• Jack Hemion, Associate Solutions Architect, Amazon Web Services

• Keith Lafaso, Senior Solutions Architect, Amazon Web Services

Document Revisions
Date Description

September 2017 First publication

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 54

1 https://aws.amazon.com/gaming/

2 https://github.com/AFNetworking/AFNetworking

3 http://api.jquery.com/jQuery.ajax/

4 https://curl.haxx.se/

5 http://en.cppreference.com/w/cpp/thread/async

6 http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-listener-
config.html

7 http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-
identity.html

8 https://aws.amazon.com/elasticbeanstalk/

9
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.concepts.ar
chitecture.html

10 https://aws.amazon.com/console/

11 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/GettingStarted.html

12 https://aws.amazon.com/free/

13 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications.html

14 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-
features.environments.html

15 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-
features.CNAMESwap.html

16 https://aws.amazon.com/about-aws/global-infrastructure/

17 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-
features.managing.as.html

18 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/configuring-
https.html

19 https://aws.amazon.com/s3/pricing/

20 http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

Notes

https://aws.amazon.com/gaming/
https://github.com/AFNetworking/AFNetworking
http://api.jquery.com/jQuery.ajax/
https://curl.haxx.se/
http://en.cppreference.com/w/cpp/thread/async
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-listener-config.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-listener-config.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://aws.amazon.com/elasticbeanstalk/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.concepts.architecture.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.concepts.architecture.html
https://aws.amazon.com/console/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/GettingStarted.html
https://aws.amazon.com/free/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/applications.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.environments.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.environments.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.CNAMESwap.html
https://aws.amazon.com/about-aws/global-infrastructure/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.as.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.as.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/configuring-https.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/configuring-https.html
https://aws.amazon.com/s3/pricing/
http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 55

21

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Int
roduction.html

22 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environment-
resources.html

23 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-
environment-resources-elasticache.html

24 https://aws.amazon.com/sqs/

25 https://aws.amazon.com/sns/

26 https://aws.amazon.com/blogs/aws/push-notifications-to-mobile-devices-
using-amazon-sns/

27 https://en.wikipedia.org/wiki/Representational_state_transfer

28 http://rubyonrails.org/

29 http://www.sinatrarb.com/

30 https://github.com/ruby-grape/grape

31 http://flask.pocoo.org/

32 http://bottlepy.org/docs/dev/

33 http://expressjs.com/

34 https://github.com/restify/node-restify

35 https://www.slimframework.com/

36 https://silex.symfony.com/

37 http://spring.io/

38 https://jersey.github.io/

39 https://github.com/gin-gonic/gin/

40 https://aws.amazon.com/elasticbeanstalk/faqs/

41 https://aws.amazon.com/elasticloadbalancing/

42 http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-create-
https-ssl-load-balancer.html

43 http://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html

44 http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/using-
domain-names-with-elb.html

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environment-resources.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environment-resources.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-environment-resources-elasticache.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-environment-resources-elasticache.html
https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/
https://aws.amazon.com/blogs/aws/push-notifications-to-mobile-devices-using-amazon-sns/
https://aws.amazon.com/blogs/aws/push-notifications-to-mobile-devices-using-amazon-sns/
https://en.wikipedia.org/wiki/Representational_state_transfer
http://rubyonrails.org/
http://www.sinatrarb.com/
https://github.com/ruby-grape/grape
http://flask.pocoo.org/
http://bottlepy.org/docs/dev/
http://expressjs.com/
https://github.com/restify/node-restify
https://www.slimframework.com/
https://silex.symfony.com/
http://spring.io/
https://jersey.github.io/
https://jersey.github.io/
https://aws.amazon.com/elasticbeanstalk/faqs/
https://aws.amazon.com/elasticloadbalancing/
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-create-https-ssl-load-balancer.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-create-https-ssl-load-balancer.html
http://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/using-domain-names-with-elb.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/using-domain-names-with-elb.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 56

45 https://aws.amazon.com/premiumsupport/

46 https://aws.amazon.com/articles/1636185810492479

47 http://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/what-is-
load-balancing.html

48 http://www.haproxy.org/

49
https://aws.amazon.com/marketplace/pp/B00B9KW32I/ref=portal_asin_ur
l

50 http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/health-
checks-creating-deleting.html

51 https://www.igvita.com/2012/10/31/simple-spdy-and-npn-negotiation-with-
haproxy/

52 https://aws.amazon.com/opsworks/

53
http://docs.aws.amazon.com/autoscaling/latest/userguide/WhatIsAutoScalin
g.html

54
http://docs.aws.amazon.com/autoscaling/latest/userguide/WhatIsAutoScalin
g.html

55 http://httpd.apache.org/docs/2.2/programs/ab.html

56 https://github.com/httperf/httperf

57 http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scale-based-
on-demand.html

58 http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-
autoscaling.html

59 http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-
autoscaling.html

60 https://help.ubuntu.com/community/CloudInit

61 https://aws.amazon.com/amazon-linux-ami/

62 https://aws.amazon.com/architecture/

63 https://github.com/eventmachine/eventmachine

64 http://www.gevent.org/

https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/articles/1636185810492479
http://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/what-is-load-balancing.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/what-is-load-balancing.html
http://www.haproxy.org/
https://aws.amazon.com/marketplace/pp/B00B9KW32I/ref=portal_asin_url
https://aws.amazon.com/marketplace/pp/B00B9KW32I/ref=portal_asin_url
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/health-checks-creating-deleting.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/health-checks-creating-deleting.html
https://www.igvita.com/2012/10/31/simple-spdy-and-npn-negotiation-with-haproxy/
https://www.igvita.com/2012/10/31/simple-spdy-and-npn-negotiation-with-haproxy/
https://aws.amazon.com/opsworks/
http://docs.aws.amazon.com/autoscaling/latest/userguide/WhatIsAutoScaling.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/WhatIsAutoScaling.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/WhatIsAutoScaling.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/WhatIsAutoScaling.html
http://httpd.apache.org/docs/2.2/programs/ab.html
https://github.com/httperf/httperf
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scale-based-on-demand.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scale-based-on-demand.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autoscaling.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autoscaling.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autoscaling.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autoscaling.html
https://help.ubuntu.com/community/CloudInit
https://aws.amazon.com/amazon-linux-ami/
https://aws.amazon.com/architecture/
https://github.com/eventmachine/eventmachine
http://www.gevent.org/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 57

65 http://twistedmatrix.com/trac/

66 https://nodejs.org/en/

67 https://socket.io/

68 https://github.com/caolan/async

69 http://www.erlang.org/

70 https://netty.io/wiki/index.html

71 https://d0.awsstatic.com/whitepapers/optimizing-multiplayer-game-server-
performance-on-aws.pdf

72 https://aws.amazon.com/blogs/gamedev/fitting-the-pattern-serverless-
custom-matchmaking-with-amazon-gamelift/

73 http://docs.aws.amazon.com/sns/latest/dg/welcome.html

74 http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html

75 http://docs.aws.amazon.com/sns/latest/dg/SNSMobilePush.html

76
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Getting
Started.html#CHAP_GettingStarted.CreatingConnecting.MySQL

77
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.
html#USER_PIOPS

78
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Workin
gWithParamGroups.html

79
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MyS
QL.CommonDBATasks.html

80
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ModifyI
nstance.MySQL.html

81
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRe
pl.html

82 https://redis.io/topics/data-types

83 https://redis.io/topics/data-types-intro

http://twistedmatrix.com/trac/
https://nodejs.org/en/
https://socket.io/
https://github.com/caolan/async
http://www.erlang.org/
https://netty.io/wiki/index.html
https://d0.awsstatic.com/whitepapers/optimizing-multiplayer-game-server-performance-on-aws.pdf
https://d0.awsstatic.com/whitepapers/optimizing-multiplayer-game-server-performance-on-aws.pdf
https://aws.amazon.com/blogs/gamedev/fitting-the-pattern-serverless-custom-matchmaking-with-amazon-gamelift/
https://aws.amazon.com/blogs/gamedev/fitting-the-pattern-serverless-custom-matchmaking-with-amazon-gamelift/
http://docs.aws.amazon.com/sns/latest/dg/welcome.html
http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/sns/latest/dg/SNSMobilePush.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html#CHAP_GettingStarted.CreatingConnecting.MySQL
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html#CHAP_GettingStarted.CreatingConnecting.MySQL
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#USER_PIOPS
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html#USER_PIOPS
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ModifyInstance.MySQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ModifyInstance.MySQL.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://redis.io/topics/data-types
https://redis.io/topics/data-types-intro

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 58

84 https://redis.io/topics/benchmarks

85 https://aws.amazon.com/elasticache/redis/

86 https://d0.awsstatic.com/whitepapers/performance-at-scale-with-amazon-
elasticache.pdf

87 https://docs.mongodb.com/manual/reference/command/findAndModify/

88 https://www.mongodb.com/

89 https://d0.awsstatic.com/whitepapers/AWS_NoSQL_MongoDB.pdf

90
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowI
tWorks.ProvisionedThroughput.html

91 http://docs.aws.amazon.com/AWSRubySDK/latest/index.html

92 http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html

93 http://boto.readthedocs.io/en/latest/dynamodb_tut.html

94
http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/
Welcome.html

95
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Auto
Scaling.html

96
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestP
ractices.html

97 https://aws.amazon.com/blogs/aws/optimizing-provisioned-throughput-in-
amazon-dynamodb/

98 http://memcached.org/

99 https://redis.io/

100 https://aws.amazon.com/elasticache/

101
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/WhatIs.
html

102
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheM
etrics.html

https://redis.io/topics/benchmarks
https://aws.amazon.com/elasticache/redis/
https://d0.awsstatic.com/whitepapers/performance-at-scale-with-amazon-elasticache.pdf
https://d0.awsstatic.com/whitepapers/performance-at-scale-with-amazon-elasticache.pdf
https://docs.mongodb.com/manual/reference/command/findAndModify/
https://www.mongodb.com/
https://d0.awsstatic.com/whitepapers/AWS_NoSQL_MongoDB.pdf
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
http://docs.aws.amazon.com/AWSRubySDK/latest/index.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html
http://boto.readthedocs.io/en/latest/dynamodb_tut.html
http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/Welcome.html
http://docs.aws.amazon.com/amazondynamodb/latest/gettingstartedguide/Welcome.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
https://aws.amazon.com/blogs/aws/optimizing-provisioned-throughput-in-amazon-dynamodb/
https://aws.amazon.com/blogs/aws/optimizing-provisioned-throughput-in-amazon-dynamodb/
http://memcached.org/
https://redis.io/
https://aws.amazon.com/elasticache/
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/WhatIs.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/WhatIs.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheMetrics.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheMetrics.html

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 59

103

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmT
hatSendsEmail.html

104
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Paramet
erGroups.html

105
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheM
etrics.WhichShouldIMonitor.html

106 https://aws.amazon.com/s3/

107 http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

108 https://aws.amazon.com/cloudfront/

109 https://aws.amazon.com/cloudfront/

110 https://aws.amazon.com/cloudfront/details/#faq

111 https://aws.amazon.com/contact-us/aws-sales/

112 https://en.wikipedia.org/wiki/HTTP_ETag

113 https://en.wikipedia.org/wiki/HTTP_ETag#Typical_usage

114
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Re
questAndResponseBehaviorS3Origin.html

115 http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingHTTPPOST.html

116 http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

117 http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingHTTPPOST.html

118
http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

119 https://aws.amazon.com/emr/

120 https://aws.amazon.com/redshift/

121 https://aws.amazon.com/big-data/

122 https://d0.awsstatic.com/whitepapers/aws-amazon-emr-best-practices.pdf

123 https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-
for-amazon-athena/

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ParameterGroups.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ParameterGroups.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheMetrics.WhichShouldIMonitor.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheMetrics.WhichShouldIMonitor.html
https://aws.amazon.com/s3/
http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/details/#faq
https://aws.amazon.com/contact-us/aws-sales/
https://en.wikipedia.org/wiki/HTTP_ETag
https://en.wikipedia.org/wiki/HTTP_ETag#Typical_usage
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/RequestAndResponseBehaviorS3Origin.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/RequestAndResponseBehaviorS3Origin.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingHTTPPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingHTTPPOST.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
https://aws.amazon.com/emr/
https://aws.amazon.com/redshift/
https://aws.amazon.com/big-data/
https://d0.awsstatic.com/whitepapers/aws-amazon-emr-best-practices.pdf
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/

Amazon Web Services – Introduction to Scalable Gaming Patterns on AWS

Page 60

124 http://docs.aws.amazon.com/AmazonS3/latest/dev/request-rate-perf-

considerations.html

125 https://aws.amazon.com/premiumsupport/

126 http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features-
managing-env-tiers.html

127 https://aws.amazon.com/sqs/

128
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloper
Guide/sqs-getting-started.html

129
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloper
Guide/throughput.html

130 https://aws.amazon.com/ec2/spot/

131 https://en.wikipedia.org/wiki/Idempotence

132 http://docs.aws.amazon.com/autoscaling/latest/userguide/US-
SpotInstances.html

133 http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/sns-
metricscollected.html

134
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloper
Guide/FIFO-queues.html

135 https://aws.amazon.com/lambda/

136 https://aws.amazon.com/gaming/

http://docs.aws.amazon.com/AmazonS3/latest/dev/request-rate-perf-considerations.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/request-rate-perf-considerations.html
https://aws.amazon.com/premiumsupport/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features-managing-env-tiers.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features-managing-env-tiers.html
https://aws.amazon.com/sqs/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/throughput.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/throughput.html
https://aws.amazon.com/ec2/spot/
https://en.wikipedia.org/wiki/Idempotence
http://docs.aws.amazon.com/autoscaling/latest/userguide/US-SpotInstances.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/US-SpotInstances.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/sns-metricscollected.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/sns-metricscollected.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/gaming/

	Introduction
	Getting Started
	Game Design Decisions
	Game Client Considerations

	Launching an Initial Game Backend
	High Availability, Scalability, and Security
	Binary Game Data with Amazon S3
	Expanding Beyond AWS Elastic Beanstalk

	Reference Architecture
	Games as REST APIs
	HTTP Load Balancing
	Application Load Balancer
	Custom Load Balancer

	HTTP Auto Scaling
	Installing Application Code

	Game Servers
	Matchmaking
	Push Messages with Amazon SNS
	Mobile Push Notifications

	Closing Thoughts

	Relational vs. NoSQL Databases
	MySQL
	Amazon Aurora
	Redis
	MongoDB
	Amazon DynamoDB
	Table Structure and Queries
	Provisioned Throughput
	Amazon DynamoDB Accelerator (DAX)

	Other NoSQL Options
	Caching
	Amazon ElastiCache Scaling

	Binary Game Content with Amazon S3
	Content Delivery and Amazon CloudFront
	Easy Versioning with ETag

	Uploading Content to Amazon S3
	Analytics and A/B Testing
	Amazon Athena

	Amazon S3 Performance Considerations

	Loosely Coupled Architectures with Asynchronous Jobs
	Leaderboards and Avatars
	Amazon SQS
	FIFO Queues

	Other Queue Options

	Cost of the Cloud
	Conclusion and Next Steps
	Contributors
	Document Revisions

