
AWS Database Migration Service
Best Practices

August 2016

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 2 of 17

© 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s current product

offerings and practices as of the date of issue of this document, which are subject to change

without notice. Customers are responsible for making their own independent assessment of the

information in this document and any use of AWS’s products or services, each of which is

provided “as is” without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments, conditions or assurances

from AWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its

customers are controlled by AWS agreements, and this document is not part of, nor does it

modify, any agreement between AWS and its customers.

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 3 of 17

Contents
Abstract 4

Introduction 4

Provisioning a Replication Server 6

Instance Class 6

Storage 6

Multi-AZ 7

Source Endpoint 7

Target Endpoint 7

Task 8

Migration Type 8

Start Task on Create 8

Target Table Prep Mode 8

LOB Controls 9

Enable Logging 10

Monitoring Your Tasks 10

Host Metrics 10

Replication Task Metrics 10

Table Metrics 10

Performance Expectations 11

Increasing Performance 11

Load Multiple Tables in Parallel 11

Remove Bottlenecks on the Target 11

Use Multiple Tasks 11

Improving LOB Performance 12

Optimizing Change Processing 12

Reducing Load on Your Source System 12

Frequently Asked Questions 13

What are the main reasons for performing a database migration? 13

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 4 of 17

What steps does a typical migration project include? 13

How Much Load Will the Migration Process Add to My Source Database? 14

How Long Does a Typical Database Migration Take? 14

I’m Changing Engines–How Can I Migrate My Complete Schema? 14

Why Doesn’t AWS DMS Migrate My Entire Schema? 14

Who Can Help Me with My Database Migration Project? 15

What Are the Main Reasons to Switch Database Engines? 15

How Can I Migrate from Unsupported Database Engine Versions? 15

When Should I NOT Use DMS? 16

When Should I Use a Native Replication Mechanism Instead of the DMS and the AWS Schema

Conversion Tool? 16

What Is the Maximum Size of Database That DMS Can Handle? 16

What if I Want to Migrate from Classic to VPC? 17

Conclusion 17

Contributors 17

Abstract
Today, as many companies move database workloads to Amazon Web Services (AWS), they are

often also interested in changing their primary database engine. Most current methods for

migrating databases to the cloud or switching engines require an extended outage. The AWS

Database Migration Service helps organizations to migrate database workloads to AWS or

change database engines while minimizing any associated downtime. This paper outlines best

practices for using AWS DMS.

Introduction
AWS Database Migration Service allows you to migrate data from a source database to a target

database. During a migration, the service tracks changes being made on the source database so

that they can be applied to the target database to eventually keep the two databases in sync.

Although the source and target databases can be of the same engine type, they don’t need to

be. The possible types of migrations are:

1. Homogenous migrations (migrations between the same engine types)

2. Heterogeneous migrations (migrations between different engine types)

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 5 of 17

At a high level, when using AWS DMS a user provisions a replication server, defines source and

target endpoints, and creates a task to migrate data between the source and target databases. A

typical task consists of three major phases: the full load, the application of cached changes, and

ongoing replication.

During the full load, data is loaded from tables on the source database to tables on the target

database, eight tables at a time (the default). While the full load is in progress, changes made to

the tables that are being loaded are cached on the replication server; these are the cached

changes. It’s important to know that the capturing of changes for a given table doesn’t begin

until the full load for that table starts; in other words, the start of change capture for each

individual table will be different. After the full load for a given table is complete, you can begin

to apply the cached changes for that table immediately. When ALL tables are loaded, you begin

to collect changes as transactions for the ongoing replication phase. After all cached changes are

applied, your tables are consistent transactionally and you move to the ongoing replication

phase, applying changes as transactions.

Upon initial entry into the ongoing replication phase, there will be a backlog of transactions

causing some lag between the source and target databases. After working through this backlog,

the system will eventually reach a steady state. At this point, when you’re ready, you can:

 Shut down your applications.

 Allow any remaining transactions to be applied to the target.

 Restart your applications pointing at the new target database.

AWS DMS will create the target schema objects that are needed to perform the migration.

However, AWS DMS takes a minimalist approach and creates only those objects required to

efficiently migrate the data. In other words, AWS DMS will create tables, primary keys, and in

some cases, unique indexes. It will not create secondary indexes, non-primary key constraints,

data defaults, or other objects that are not required to efficiently migrate the data from the

source system. In most cases, when performing a migration, you will also want to migrate most

or all of the source schema. If you are performing a homogeneous migration, you can

accomplish this by using your engine’s native tools to perform a no-data export/import of the

schema. If your migration is heterogeneous, you can use the AWS Schema Conversion Tool

(AWS SCT) to generate a complete target schema for you.

Note Any inter-table dependencies, such as foreign key constraints, must be

disabled during the “full load” and “cached change application” phases of AWS

DMS processing. Also, if performance is an issue, it will be beneficial to remove

or disable secondary indexes during the migration process.

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 6 of 17

Provisioning a Replication Server
AWS DMS is a managed service that runs on an Amazon Elastic Compute Cloud (Amazon EC2)

instance. The service connects to the source database, reads the source data, formats the data

for consumption by the target database, and loads the data into the target database. Most of

this processing happens in memory, however, large transactions may require some buffering on

disk. Cached transactions and log files are also written to disk. The following sections describe

what you should consider when selecting your replication server.

Instance Class
Some of the smaller instance classes are sufficient for testing the service or for small migrations.

If your migration involves a large number of tables, or if you intend to run multiple concurrent

replication tasks, you should consider using one of the larger instances because the service

consumes a fair amount of memory and CPU.

Note T2 type instances are designed to provide moderate baseline

performance and the capability to burst to significantly higher performance, as

required by your workload. They are intended for workloads that don't use the

full CPU often or consistently, but that occasionally need to burst. T2 instances

are well suited for general purpose workloads, such as web servers, developer

environments, and small databases. If you’re troubleshooting a slow migration

and using a T2 instance type, look at the CPU Utilization host metric to see if

you’re bursting over the baseline for that instance type.

Storage
Depending on the instance class, your replication server will come with either 50 GB or 100 GB

of data storage. This storage is used for log files and any cached changes that are collected

during the load. If your source system is busy or takes large transactions, or if you’re running

multiple tasks on the replication server, you might need to increase this amount of storage.

However, the default amount is usually sufficient.

Note All storage volumes in AWS DMS are GP2 or General Purpose SSDs. GP2

volumes come with a base performance of three I/O Operations Per Second

(IOPS), with abilities to burst up to 3,000 IOPS on a credit basis. As a rule of

thumb, check the ReadIOPS and WriteIOPS metrics for the replication instance

and be sure the sum of these values does not cross the base performance for

that volume.

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 7 of 17

Multi-AZ
Selecting a Multi-AZ instance can protect your migration from storage failures. Most migrations

are transient and not intended to run for long periods of time. If you’re using AWS DMS for

ongoing replication purposes, selecting a Multi-AZ instance can improve your availability should

a storage issue occur.

Source Endpoint
The change capture process, used when replicating ongoing changes, collects changes from the

database logs by using the database engines native API, no client side install is required. Each

engine has specific configuration requirements for exposing this change stream to a given user

account (for details, see the AWS Key Management Service documentation). Most engines

require some additional configuration to make the change data consumable in a meaningful way

without data loss for the capture process. (For example, Oracle requires the addition of

supplemental logging, and MySQL requires row-level bin logging.)

Note When capturing changes from an Amazon Relational Database Service

(Amazon RDS) source, ensure backups are enabled and the source is configured

to retain change logs for a sufficiently long time (usually 24 hours).

Target Endpoint
Whenever possible, AWS DMS attempts to create the target schema for you, including

underlying tables and primary keys. However, sometimes this isn’t possible. For example, when

the target is Oracle, AWS DMS doesn’t create the target schema for security reasons. In MySQL,

you have the option through extra connection parameters to have AWS DMS migrate objects to

the specified database or to have AWS DMS create each database for you as it finds the

database on the source.

Note For the purposes of this paper, in Oracle a user and schema are

synonymous. In MySQL, schema is synonymous with database. Both SQL Server

and Postgres have a concept of database AND schema. In this paper, we’re

referring to the schema.

https://aws.amazon.com/documentation/kms/

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 8 of 17

Task
The following section highlights common and important options to consider when creating a

task.

Migration Type
 Migrate existing data. If you can afford an outage that’s long enough to copy your

existing data, this is a good option to choose. This option simply migrates the data from

your source system to your target, creating tables as needed.

 Migrate existing data and replicate ongoing changes. This option performs a full data

load while capturing changes on the source. After the full load is complete, captured

changes are applied to the target. Eventually, the application of changes will reach a

steady state. At that point, you can shut down your applications, let the remaining

changes flow through to the target, and restart your applications to point at the target.

 Replicate data changes only. In some situations it may be more efficient to copy the

existing data by using a method outside of AWS DMS. For example, in a homogeneous

migration, using native export/import tools can be more efficient at loading the bulk

data. When this is the case, you can use AWS DMS to replicate changes as of the point in

time at which you started your bulk load to bring and keep your source and target

systems in sync. When replicating data changes only, you need to specify a time from

which AWS DMS will begin to read changes from the database change logs. It’s important

to keep these logs available on the server for a period of time to ensure AWS DMS has

access to these changes. This is typically achieved by keeping the logs available for 24

hours (or longer) during the migration process.

Start Task on Create
By default, AWS DMS will start your task as soon as you create it. In some situations, it’s helpful

to postpone the start of the task. For example, using the AWS Command Line Interface (AWS

CLI), you may have a process that creates a task and a different process that starts the task,

based on some triggering event.

Target Table Prep Mode
Target table prep mode tells AWS DMS what to do with tables that already exist. If a table that is

a member of a migration doesn’t yet exist on the target, AWS DMS will create the table. By

default, AWS DMS will drop and recreate any existing tables on the target in preparation for a

full load or a reload. If you’re pre-creating your schema, set your target table prep mode to

truncate, causing AWS DMS to truncate existing tables prior to load or reload. When the table

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 9 of 17

prep mode is set to do nothing, any data that exists in the target tables is left as is. This can be

useful when consolidating data from multiple systems into a single table using multiple tasks.

AWS DMS performs these steps when it creates a target table:

 The source database column data type is converted into an intermediate AWS DMS data

type.

 The AWS DMS data type is converted into the target data type.

This data type conversion is performed for both heterogeneous and homogeneous migrations.

In a homogeneous migration, this data type conversion may lead to target data types not

matching source data types exactly. For example, in some situations it’s necessary to triple the

size of varchar columns to account for multi-byte characters. We recommend going through the

AWS DMS documentation on source and target data types to see if all the data types you use

are supported. If the resultant data types aren’t to your liking when you’re using AWS DMS to

create your objects, you can pre-create those objects on the target database. If you do pre-

create some or all of your target objects, be sure to choose the truncate or do nothing options

for target table preparation mode.

LOB Controls
Due to their unknown and sometimes large size, large objects (LOBs) require more processing

and resources than standard objects. To help with tuning migrations of systems that contain

LOBs, AWS DMS offers the following options:

 Don’t include LOB columns. When this option is selected, tables that include LOB

columns are migrated in full, however, any columns containing LOBs will be omitted.

 Full LOB mode. When you select full LOB mode, AWS DMS assumes no information

regarding the size of the LOB data. LOBs are migrated in full, in successive pieces, whose

size is determined by the LOB chunk size. Changing the LOB chunk size affects the

memory consumption of AWS DMS; a large LOB chunk size requires more memory and

processing. Memory is consumed per LOB, per row. If you have a table containing three

LOBs, and are moving data 1,000 rows at a time, an LOB chunk size of 32 k will require

3*32*1000 = 96,000 k of memory for processing. Ideally, the LOB chunk size should be

set to allow AWS DMS to retrieve the majority of LOBs in as few chunks as possible. For

example, if 90 percent of your LOBs are less than 32 k, then setting the LOB chunk size

to 32 k would be reasonable, assuming you have the memory to accommodate the

setting.

 Limited LOB mode. When limited LOB mode is selected, any LOBs that are larger than

max LOB size are truncated to max LOB size and a warning is issued to the log file. Using

limited LOB mode is almost always more efficient and faster than full LOB mode. You

can usually query your data dictionary to determine the size of the largest LOB in a

table, setting max LOB size to something slightly larger than this (don’t forget to account

for multi-byte characters). If you have a table in which most LOBs are small, with a few

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 10 of 17

large outliers, it may be a good idea to move the large LOBs into their own table and use

two tasks to consolidate the tables on the target.

LOB columns are transferred only if the source table has a primary key or a unique index on

the table. Transfer of data containing LOBs is a two-step process:

1. The containing row on the target is created without the LOB data.

2. The table is updated with the LOB data.

The process was designed this way to accommodate the methods source database engines

use to manage LOBs and changes to LOB data.

Enable Logging
It’s always a good idea to enable logging because many informational and warning messages are

written to the logs. However, be advised that you’ll incur a small charge, as the logs are made

accessible by using Amazon CloudWatch.

Find appropriate entries in the logs by looking for lines that start with the following:

 Lines starting with “E:” – Errors

 Lines starting with “W:” – Warnings

 Lines starting with “I:” – Informational messages

You can use grep (on UNIX-based text editors) or search (for Windows-based text editors) to find

exactly what you’re looking for in a huge task log.

Monitoring Your Tasks
There are several options for monitoring your tasks using the AWS DMS console.

Host Metrics
You can find host metrics on your replication instances monitoring tab. Here, you can monitor

whether your replication instance is sized appropriately.

Replication Task Metrics
Metrics for replication tasks, including incoming and committed changes, and latency between

the replication host and source/target databases can be found on the task monitoring tab for

each particular task.

Table Metrics
Individual table metrics can be found under the table statistics tab for each individual task.

These metrics include: the number of rows loaded during the full load; the number of inserts,

updates, and deletes since the task started; and the number of DDL operations since the task

started.

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 11 of 17

Performance Expectations
There are a number of factors that will affect the performance of your migration: resource

availability on the source, available network throughput, resource capacity of the replication

server, ability of the target to ingest changes, type and distribution of source data, number of

objects to be migrated, and so on. In our tests, we have been able to migrate a terabyte of data

in approximately 12–13 hours (under “ideal” conditions). Our tests were performed using source

databases running on EC2, and in Amazon RDS with target databases in RDS. Our source

databases contained a representative amount of relatively evenly distributed data with a few

large tables containing up to 250 GB of data.

Increasing Performance
The performance of your migration will be limited by one or more bottlenecks you encounter

along the way. The following are a few things you can do to increase performance.

Load Multiple Tables in Parallel
By default, AWS DMS loads eight tables at a time. You may see some performance improvement

by increasing this slightly when you’re using a very large replication server; however, at some

point increasing this parallelism will reduce performance. If your replication server is smaller,

you should reduce this number.

Remove Bottlenecks on the Target
During the migration, try to remove any processes that would compete for write resources on

your target database. This includes disabling unnecessary triggers, validation, secondary

indexes, and so on. When migrating to an RDS database, it’s a good idea to disable backups and

Multi-AZ on the target until you’re ready to cutover. Similarly, when migrating to non-RDS

systems, disabling any logging on the target until cutover is usually a good idea.

Use Multiple Tasks
Sometimes using multiple tasks for a single migration can improve performance. If you have sets

of tables that don’t participate in common transactions, it may be possible to divide your

migration into multiple tasks.

Note Transactional consistency is maintained within a task. Therefore, it’s

important that tables in separate tasks don’t participate in common

transactions. Additionally, each task will independently read the transaction

stream. Therefore, be careful not to put too much stress on the source system.

For very large systems or systems with many LOBs, you may also consider using

multiple replication servers, each containing one or more tasks. A review of the

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 12 of 17

host statistics of your replication server can help you determine whether this

might be a good option.

Improving LOB Performance
Pay attention to the LOB parameters. Whenever possible, use limited LOB mode. If you have a

table which consists of a few large LOBs and mostly smaller LOBs, consider breaking up the table

into a table that contains the large LOBs and a table that contains the small LOBs prior to the

migration. You can then use a task in limited LOB mode to migrate the table containing small

LOBs, and a task in full LOB mode to migrate the table containing large LOBs.

Important In LOB processing, LOBs are migrated using a two-step process: first,

the containing row is created without the LOB, and then the row is updated

with the LOB data. Therefore, even if the LOB column is NOT NULLABLE on the

source, it must be nullable on the target during the migration.

Optimizing Change Processing
By default, AWS DMS processes changes in a transactional mode, which preserves transactional

integrity. If you can afford temporary lapses in transactional integrity, you can turn on batch

optimized apply. Batch optimized apply groups transactions and applies them in batches for

efficiency purposes.

Note Using batch optimized apply will almost certainly violate referential

integrity constraints. Therefore, you should disable them during the migration

process and enable them as part of the cutover process.

Reducing Load on Your Source System
During a migration, AWS DMS performs a full table scan of each source table being processed

(usually in parallel). Additionally, each task periodically queries the source for change

information. To perform change processing, you may be required to increase the amount of

data written to your database’s change log. If you find you are overburdening your source

database, you can reduce the number of tasks or tables per task of your migration. If you prefer

not to add load to your source, consider performing the migration from a read copy of your

source system.

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 13 of 17

Note Using a read copy will increase the replication lag.

Frequently Asked Questions

What Are the Main Reasons for Performing a

Database migration?
Would you like to move your database from a commercial engine to an open source alternative?

Perhaps you want to move your on-premises database into the AWS Cloud. Would you like to

divide your database into functional pieces? Maybe you’d like to move some of your data from

RDS into Amazon Redshift. These and other similar scenarios can be considered “database

migrations”.

What Steps Does a Typical Migration Project Include?
This of course depends on the reason for and type of migration you choose to perform. At a

minimum, you’ll want to do the following.

Perform an Assessment
In an assessment, you determine the basic framework of your migration and discover things in

your environment that you’ll need to change to make a migration successful. The following are

some questions to ask:

 Which objects do I want to migrate?

 Are my data types compatible with those covered by AWS DMS?

 Does my source system have the necessary capacity and is it configured to support a

migration?

 What is my target and how should I configure it to get the required or desired capacity?

Prototype Migration Configuration
This is typically an iterative process. It’s a good idea to use a small test migration consisting of a

couple of tables to verify you’ve got things properly configured. Once you’ve verified your

configuration, test the migration with any objects you suspect could be difficult. These can

include LOB objects, character set conversions, complex data types, and so on. When you’ve

worked out any kinks related to complexity, test your largest tables to see what sort of

throughput you can achieve for them.

Design Your Migration
Concurrently with the prototyping stage, you should determine exactly how you intend to

migrate your application. The steps can vary dramatically, depending on the type of migration

you’re performing.

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 14 of 17

Testing Your End-to-End Migration
After you have completed your prototyping, it’s a good idea to test a complete migration. Are all

objects accounted for? Does the migration fit within expected time limits? Are there any errors

or warnings in the log files that are a concern?

Perform Your Migration
After you’re satisfied that you’ve got a comprehensive migration plan and have tested your

migration end-to-end, it’s time to perform your migration!

How Much Load Will the Migration Process Add to My

Source Database?
This a complex question with no specific answer. The load on a source database is dependent

upon several things.

During a migration, AWS DMS performs a full table scan of the source table for each table

processed in parallel. Additionally, each task periodically queries the source for change

information. To perform change processing, you may be required to increase the amount of

data written to your databases change log. If your tasks contain a Change Data Capture (CDC)

component, the size, location, and retention of log files can have an impact on the load.

How Long Does a Typical Database Migration Take?
The following are items that determine the length of your migration: total amount of data being

migrated, amount and size of LOB data, size of the largest tables, total number of objects being

migrated, secondary indexes created on the target before the migration, resources available on

the source system, resources available on the target system, resources available on the

replication server, network throughput, and so on.

Clearly, there is no one formula that will predict how long your migration will take. The best way

to gauge how long your particular migration will take is to test it.

I’m Changing Engines–How Can I Migrate My

Complete Schema?
As previously stated, AWS DMS will only create those objects needed to perform an optimized

migration of your data. You can use the free AWS Schema Conversion Tool (AWS SCT) to convert

an entire schema from one database engine to another. The AWS SCT can be used with AWS

DMS to facilitate the migration of your entire system.

Why Doesn’t AWS DMS Migrate My Entire Schema?
All database engines supported by AWS DMS have native tools that you can use to export and

import your schema in a homogeneous environment. Amazon has developed the AWS SCT to

facilitate the migration of your schema in a heterogeneous environment. The AWS DMS is

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 15 of 17

intended to be used with one of these methods to perform a complete migration of your

database.

Who Can Help Me with My Database Migration

Project?
Most of Amazon’s customers should be able to complete a database migration project by

themselves. However, if your project is challenging, or you are short on resources, one of our

migration partners should be able to help you out. For details, please visit

https://aws.amazon.com/partners.

What Are the Main Reasons to Switch Database

Engines?
There are two main reasons we see people switching engines:

 Modernization. The customer wants to use a modern framework or platform for their

application portfolio, and these platforms are available only on more modern SQL or

NoSQL database engines.

 License fees. The customer wants to migrate to an open source engine to reduce license

fees.

How Can I Migrate from Unsupported Database

Engine Versions?
Amazon has tried to make AWS DMS compatible with as many supported database versions as

possible. However, some database versions don’t support the necessary features required by

AWS DMS, especially with respect to change capture and apply. Currently, to fully migrate from

an unsupported database engine, you must first upgrade your database to a supported engine.

Alternatively, you may be able to perform a complete migration from an “unsupported” version

if you don’t need the change capture, and apply capabilities of DMS. If you are performing a

homogeneous migration, one of the following methods might work for you:

 MySQL: Importing and Exporting Data From a MySQL DB Instance

 Oracle: Importing Data Into Oracle on Amazon RDS

 SQL Server: Importing and Exporting SQL Server Databases

 PostgreSQL: Importing Data into PostgreSQL on Amazon RDS

https://aws.amazon.com/partners
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Oracle.Procedural.Importing.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/SQLServer.Procedural.Importing.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Procedural.Importing.html

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 16 of 17

When Should I NOT Use DMS?
Most databases offer a native method for migrating between servers or platforms. Sometimes,

using a simple backup and restore or export/import is the most efficient way to migrate your

data into AWS. If you’re considering a homogeneous migration, you should first assess whether

a suitable native option exists. In some situations, you might choose to use the native tools to

perform the bulk load and use DMS to capture and apply changes that occur during the bulk

load. For example when migrating between different flavors of MySQL or Amazon Aurora,

creating and promoting a read replica is most likely your best option. See Importing and

Exporting Data From a MySQL DB Instance.

When Should I Use a Native Replication Mechanism

Instead of the DMS and the AWS Schema

Conversion Tool?
This is very much related to the previous question. If you can successfully set up a replica of your

primary database in your target environment by using native tools more easily than you can

with DMS, you should consider using that native method for migrating your system. Some

examples include:

 Read replicas – MySQL

 Standby databases – Oracle, Postgres

 AlwaysOn availability groups – SQL Server

Note AlwaysOn is not supported in RDS.

What Is the Maximum Size of Database That DMS

Can Handle?
This depends on your environment, the distribution of data, and how busy your source system

is. The best way to determine whether your particular system is a candidate for DMS is to test it

out. Start slowly, to get the configuration worked out, add some complex objects, and finally

attempt a full load as a test. As a ballpark maximum figure: Under mostly ideal conditions (EC2

to RDS, cross region), over the course of a weekend (approximately 33 hours) we were able to

migrate five terabytes of relatively evenly distributed data, including four large (250 GB) tables,

a huge (1 TB) table, 1,000 small to moderately sized tables, three tables that contained LOBs

varying between 25 GB and 75 GB, and 10,000 very small tables.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html

Amazon Web Services – AWS Database Migration Service Best Practices August 2016

Page 17 of 17

What if I Want to Migrate from Classic to VPC?
DMS can be used to help minimize database-related outages when moving a database from

outside a VPC into a VPC. The following are the basic strategies for migrating into a VPC:

 Generic EC2 Classic to VPC Migration Guide: Migrating from a Linux Instance in EC2-

Classic to a Linux Instance in a VPC

 Specific Procedures for RDS: Moving a DB Instance Not in a VPC into a VPC

Conclusion
This paper outlined best practices for using AWS DMS to migrate data from a source database to

a target database, and offers answers to several frequently asked questions about migrations.

As companies move database workloads to AWS, they are often also interested in changing their

primary database engine. Most current methods for migrating databases to the cloud or

switching engines require an extended outage. The AWS DMS helps to migrate database

workloads to AWS or change database engines while minimizing any associated downtime.

Contributors
The following individuals and organizations contributed to this document:

 Ed Murray, Senior Database Engineer, Amazon RDS/AWS DMS

 Arun Thiagarajan, Cloud Support Engineer, AWS Premium Support

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html#USER_VPC.Non-VPC2VPC

