
Apache Cassandra on AWS
Guidelines and Best Practices

January 2016

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 2 of 52

© 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for making

their own independent assessment of the information in this document and any

use of AWS’s products or services, each of which is provided “as is” without

warranty of any kind, whether express or implied. This document does not create

any warranties, representations, contractual commitments, conditions or

assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and

liabilities of AWS to its customers are controlled by AWS agreements, and this

document is not part of, nor does it modify, any agreement between AWS and its

customers.

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 3 of 52

Notices 2

Abstract 4

Introduction 4

NoSQL on AWS 5

Cassandra: A Brief Introduction 6

Cassandra: Key Terms and Concepts 6

Write Request Flow 8

Compaction 11

Read Request Flow 11

Cassandra: Resource Requirements 14

Storage and IO Requirements 14

Network Requirements 15

Memory Requirements 15

CPU Requirements 15

Planning Cassandra Clusters on AWS 16

Planning Regions and Availability Zones 16

Planning an Amazon Virtual Private Cloud 18

Planning Elastic Network Interfaces 19

Planning High-Performance Storage Options 20

Planning Instance Types Based on Storage Needs 24

Deploying Cassandra on AWS 30

Setting Up High Availability 31

Automating This Setup 32

Setting Up for Security 36

Monitoring by Using Amazon CloudWatch 37

Using Multi-Region Clusters 39

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 4 of 52

Performing Backups 41

Building Custom AMIs 42

Migration into AWS 42

Analytics on Cassandra with Amazon EMR 44

Optimizing Data Transfer Costs 45

Benchmarking Cassandra 46

Using the Cassandra Quick Start Deployment 47

Conclusion 48

Contributors 48

Further Reading 48

Notes 49

Abstract
Amazon Web Services (AWS) is a flexible, cost-effective, easy-to-use cloud-

computing platform. Apache Cassandra is a popular NoSQL database that is

widely deployed in the AWS cloud. Running your own Cassandra deployment on

Amazon Elastic Cloud Compute (Amazon EC2) is a great solution for users whose

applications have high throughput requirements.

This whitepaper provides an overview of Cassandra and its implementation on

the AWS cloud platform. It also talks about best practices and implementation

characteristics such as performance, durability, and security, and focuses on AWS

features relevant to Cassandra that help ensure scalability, high availability, and

disaster recovery in a cost-effective manner.

Introduction
NoSQL databases are a type of database optimized for high-performance

operations on large datasets. Each type of NoSQL database provides its own

https://aws.amazon.com/nosql/

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 5 of 52

interface for accessing the system and its features. One way to choose a NoSQL

database types is by looking at the underlying data model, as shown following:

 Key-value stores: Data is organized as key-value relationships and

accessed by primary key. These products are typically distributed row

stores. Examples are Cassandra and Amazon DynamoDB.

 Graph databases: Data is organized as graph data structures and accessed

through semantic queries. Examples are Titan and Neo4J.

 Document databases: Data is organized as documents (for example, JSON

files) and accessed by fields within the documents. Examples are

MongoDB and DynamoDB.

 Columnar databases: Data is organized as sections of columns of data,

rather than rows of data. Example: HBase.

DynamoDB shows up in both document and key-value stores in this list because

it supports storing and querying both key-value pairs and objects in a document

format like JSON, XML, or HTML.

NoSQL on AWS
Amazon Web Services provides several NoSQL database software options for

customers looking for a fully managed solution, or for customers who want full

control over their NoSQL databases but who don’t want to manage hardware

infrastructure. All our solutions offer flexible, pay-as-you-go pricing, so you can

quickly and easily scale at a low cost.

Consider the following options as possible alternatives to building your own

system with open source software (OSS) or a commercial NoSQL product.

 Amazon DynamoDB is a fully managed NoSQL database service that

provides fast and predictable performance with seamless scalability.1 All

data items in DynamoDB are stored on solid-state drives (SSDs) and are

automatically replicated across three facilities in an AWS region to provide

built-in high availability and data durability. With Amazon DynamoDB,

you can offload the administrative burden of operating and scaling a

highly available distributed database cluster while paying a low variable

price for only the resources you consume.

https://aws.amazon.com/dynamodb/

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 6 of 52

 Amazon Simple Storage Service (Amazon S3) provides a simple web

services interface that can store and retrieve any amount of data anytime

from anywhere on the web.2 Amazon S3 gives developers access to the

same highly scalable, reliable, secure, fast, and inexpensive infrastructure

that Amazon uses to run its own global network of websites. Amazon S3

maximizes benefits of scale, and passes those benefits on to you.

Cassandra: A Brief Introduction
Note: This is a brief overview on how Cassandra works; to learn more visit

DataStax documentation.3

Apache Cassandra is a massively scalable open source NoSQL database, which is

ideal for managing large amounts of structured, semi-structured, and

unstructured data across multiple distributed locations. Cassandra is based on

log-structured merge-tree, a data structure that is highly efficient with high-

volume write operations.4 The most popular use case for Cassandra is storing

time series data.

Cassandra delivers continuous availability, linear scalability, and operational

simplicity across many commodity servers with no single point of failure, along

with a powerful dynamic data model designed for maximum flexibility and fast

response times. Cassandra is a master less peer-to-peer distributed system where

data is distributed among all nodes in the cluster. Each node has knowledge

about the topology of the cluster and exchanges information across the cluster

every second.

Cassandra: Key Terms and Concepts
Before we discuss best practices and considerations for using Cassandra on AWS,

let us review some key concepts.

A cluster is the largest unit of deployment in Cassandra. Each cluster consists of

nodes from one or more distributed locations (Availability Zones or AZ in AWS

terms).

A distributed location contains a collection of nodes that are part of a cluster. In

general, while designing a Cassandra cluster on AWS, we recommend that you

https://aws.amazon.com/s3/
http://docs.datastax.com/en/landing_page/doc/landing_page/current.html
https://en.wikipedia.org/wiki/Log-structured_merge-tree

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 7 of 52

use multiple Availability Zones to store your data in the cluster. You can

configure Cassandra to replicate data across multiple Availability Zones, which

will allow your database cluster to be highly available even during the event of an

Availability Zone failure. To ensure even distribution of data, the number of

Availability Zones should be a multiple of the replication factor. The Availability

Zones are also connected through low-latency links, which further helps avoid

latency for replication.

A node is a part of a single distributed location in a Cassandra cluster that stores

partitions of data according to the partitioning algorithm.

A commit log is a write-ahead log on every node in the cluster. Every write

operation made to Cassandra is first written sequentially to this append-only

structure, which is then flushed from the write-back cache on the operating

system (OS) to disk either periodically or in batches. In the event of a node

recovery, the commit logs are replayed to perform recovery of data.

A memtable is basically a write-back cache of data rows that can be looked up by

key. It is an in-memory structure. A single memtable only stores data for a single

table and is flushed to disk either when node global memory thresholds have

been reached, the commit log is full, or after a table level interval is reached.

An SStable (sorted string table) is a logical structure made up of multiple physical

files on disk. An SStable is created when a memtable is flushed to disk. An

SStable is an immutable data structure. Memtables are sorted by key and then

written out sequentially to create an SStable. Thus, write operations in Cassandra

are extremely fast, costing only a commit log append and an amortized sequential

write operation for the flush.

A bloom filter is a probabilistic data structure for testing set membership that

never produces a false negative, but can be tuned for false positives. Bloom filters

are off-heap structures. Thus, if a bloom filter responds that a key is not present

in an SStable, then the key is not present, but if it responds that the key is present

in the SStable, it might or might not be present. Bloom filters can help scale read

requests in Cassandra. Bloom filters can also save additional disk read operations

reading the SStable, by indicating if a key is not present in the SStable.

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 8 of 52

An index file maintains the offset of keys into the main data file (SStable).

Cassandra by default holds a sample of the index file in memory, which stores the

offset for every 128th key in the main data file (this value is configurable). Index

files can also help scale read operations better because they can provide you the

random position in the SStable from which you can sequentially scan to get the

data. Without the index files, you need to scan the whole SStable to retrieve data.

A keyspace is a logical container in a cluster that contains one or more tables.

Replication strategy is typically defined at the keyspace level.

A table, also known as a column family, is a logical entity within a keyspace

consisting of a collection of ordered columns fetched by row. Primary key

definition is required while defining a table.

Write Request Flow
The following diagram shows a Cassandra cluster with seven nodes with a

replication factor of 3. The clients are writing to the cluster using quorum

consistency level.5 While using quorum consistency level, write operations

succeed if two out of three nodes acknowledge success to the coordinator (the

node that the client connects to).

https://en.wikipedia.org/wiki/Quorum_(distributed_computing)

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 9 of 52

Figure 1: Write Request Flow

The preceding diagram illustrates a typical write request to Cassandra with three-

way replication, as described following:

1. A client sends a request to a node in the cluster to store a given key. At this

point, the node might or might not be the right partition to store the key. If

it is not the right partition, the node acts as a coordinator (the case in this

example). Note that a node can either act as a replica or a coordinator or

both (if the node maps to the data and is talking to the client).

2. The coordinator determines the replica nodes that should store the key

and forwards the request to those nodes.

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 10 of 52

3. Each node that gets the key performs a sequential write operation of the

data, along with the metadata required to recreate the data in the commit

log locally.

4. The key along with its data is written to the in-memory memtable locally.

5. Replica nodes respond back to the coordinator with a success or failure.

6. Depending on the consistency level specified as part of the request, the

coordinator will respond with success or failure to the client. For example,

with a consistency level of quorum and a replication factor of 3, the

coordinator will respond with success as soon as two out of three nodes

respond with success.

Now, during step 5 preceding, if some nodes do not respond back and fail (for

example, one out of three nodes), then the coordinator stores a hint locally to

send the write operation to the failed node or nodes when the node or nodes are

available again. These hints are stored with a time to live equal to the

gc_grace_seconds parameter value, so that they do not get replayed later. Hints

will only be recorded for a period equal to the max_hint_window_in_ms

parameter (defined in cassandra.yaml), which defaults to three hours.

As the clients keep writing to the cluster, a background thread keeps checking the

size of all current memtables. If the thread determines that either the node global

memory thresholds have been reached, the commit log is full, or a table level

interval has been reached, it creates a new memtable to replace the current one

and marks the replaced memtable for flushing. The memtables marked for flush

are flushed to disk by another thread (typically, by multiple threads).

Once a memtable is flushed to disk, all entries for the keys corresponding to that

memtable that reside in a commit log are no longer required, and those commit

log segments are marked for recycling.

When a memtable is flushed to disk, a couple of other data structures are created:

a bloom filter and an index file.

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 11 of 52

Compaction
The number of SStables can increase over a period of time. To keep the SStables

manageable, Cassandra automatically performs minor compactions by default.

Compaction merges multiple SStables based on an algorithm that you specify

using a compaction strategy.

Compaction allows you to optimize your read operations by allowing you to read

a smaller number of SStables to satisfy the read request. Compaction basically

merges multiple SStables based on the configurable threshold to create one or

more new, immutable SStables. For example, the default compaction strategy,

Size Tiered Compaction, groups multiple similar-sized SStables together and

creates a single large SStable. It keeps iterating this process on similar-sized

SStables.

Compaction does not modify existing SStables (remember, SStables are

immutable) and only creates a new SStable from the existing ones. When a new

SStable is created, the older ones are marked for deletion. Thus, the used space is

temporarily higher during compaction. The amount of space overhead due to

compaction depends on the compaction strategy used. This space overhead needs

to be accounted for during the planning process. SStables that are marked for

deletion are deleted using a reference counting mechanism or during a restart.

Read Request Flow
Before we dive into the read request flow, we will summarize what we know about

a Cassandra cluster.

In a cluster, each row is replicated across multiple nodes (depending on your

replication factor). There is no concept of a master node. This approach means

that any node in the cluster that contains the row can answer queries about that

row. Cassandra uses the Gossip protocol to exchange information about network

topology among nodes. By virtue of Gossip, every node learns about the topology

of the cluster and can determine where a request for a given row should be sent to

in the cluster.

In the diagram following, we have a Cassandra cluster with seven nodes and a

replication factor of 3. The clients read from the cluster using quorum

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 12 of 52

consistency level. While using quorum consistency level, read operations succeed

if two out of three nodes acknowledge success.

With this brief context, let us look at how the read requests are served. The figure

and list following illustrate.

Figure 2: Read Request Flow

1. A client sends a request to a node in the cluster to get data for a given key,

K. At this point, if the key is not mapped to this node, then the node acts as

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 13 of 52

a coordinator. Note that a node can either act as a replica or a coordinator

or both (if the node maps to the data and is talking to the client).

2. The coordinator determines the replica nodes that might contain the key

and forwards the request to those nodes. While sending the request to the

replica nodes, the coordinator determines which node is closer to itself

(through a snitch) and sends a request for full data to the closest node and

a request for the digest generated with the hash of the data from the other

nodes. (A snitch determines which host is closest to the current location.)

3. The request is forwarded to the internal services of the node for further

processing.

4. A request for data from both the memtable and SStables is made. The

request iterates over the bloom filters for the SStables asking whether the

key is present.

5. Because the memtable is in memory, data might be returned faster from

the memtable, but one or more SStables still need to be consulted for the

data.

6. If a bloom filter responds that the key is not present, the next bloom filter

is checked. If a bloom filter responds that the key might be present (which

is the case here), then it checks the sample index in memory.

7. A binary search is performed on the sample index to determine a starting

offset into the actual index file. This offset is used to offset into the index

file and do a sequential read operation to obtain the offset into the SStable

for the actual key.

8. With the offset obtained from step 7, the actual data from the SStable is

returned by offsetting into the SStable file.

9. The data for the key is returned from the SStable lookup. The filter

command consolidates all versions of the key data obtained from SStable

lookups and the memtable.

10. The latest consolidated version of the key data is returned to the internal

services.

11. The same process is repeated by the internal services on other nodes and

results are returned back to the coordinator node.

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 14 of 52

12. The coordinator compares the digest obtained from all nodes and

determines if there is a conflict within the data. If there is a conflict, the

coordinator reconciles the data and returns the reconciled version back to

the client. A read repair is also initiated to make the data consistent.

Note that we did not talk about the cache preceding. To learn more about

caching, refer to the DataStax documentation.6

Read repairs can resolve data inconsistencies when the written data is read. But

when the written data is not read, you can only use either the hinted handoff 7 or

anti-entropy 8 mechanism.

Cassandra: Resource Requirements
Let us now take a look at the resources required to run Cassandra. We will look at

storage and I/O, CPU, memory, and networking requirements.

Storage and IO Requirements
Most of the I/O happening in Cassandra is sequential. But there are cases where

you require random I/O. An example is when reading SStables during read

operations.

SSD is the recommended storage mechanism for Cassandra, because it provides

extremely low-latency response times for random read operations while

supplying ample sequential write performance for compaction operations.

Replication and storage overhead due to compaction has to be taken into account

while determining storage requirements.

The recommended file system for all volumes is XFS. Ext4 might be used by

preference. Ext3 is considerably slower, and we recommend that you avoid it.

AWS provides two types of storage options, namely local storage and Amazon

Elastic Block Store (Amazon EBS). Local storage is available locally to the

instance, and EBS is network-attached storage. We will talk more about choosing

a storage option on AWS for Cassandra later in this whitepaper.

https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_how_cache_works_c.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_about_hh_c.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/tools/toolsRepair.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 15 of 52

Network Requirements
Cassandra uses the Gossip protocol to exchange information with other nodes

about network topology. The use of Gossip coupled with distributed nature of

Cassandra, which involves talking to multiple nodes for read and write

operations, results in a lot of data transfer through the network.

That being the case, we recommend to always choose instances with at least 1

Gbps network bandwidth to accommodate replication and Gossip. When using

AWS, we recommend choosing instance types with enhanced networking

enabled. Enhanced networking offers better network performance. We will

discuss more about this option and its benefits later in this whitepaper.

Memory Requirements
Cassandra basically runs on a Java virtual machine (JVM). The JVM has to be

appropriately sized for performance. Large heaps can introduce garbage

collection (GC) pauses that can lead to latency, or even make a Cassandra node

appear to have gone offline. Proper heap settings can minimize the impact of GC

in the JVM.

The MAX_HEAP_SIZE parameter determines the heap size of the Cassandra

JVM. DataStax recommends not to allocate more than 8 GB for the heap.

The HEAP_NEW_SIZE parameter is the size of the young generation in Java. A

general rule of thumb is to set this value at 100 MB per vCPU on Amazon EC2.

Cassandra also largely depends on the OS file cache for read performance. Hence,

choosing an optimum JVM heap size and leaving enough memory for OS file

cache is important. For production workloads, our general recommendation is to

choose an instance type with at least 32 GB of DRAM.

Learn more about JVM tuning in the DataStax documentation.9

CPU Requirements
When looking at Cassandra CPU requirements, it's useful to note that insert-

heavy workloads are CPU-bound in Cassandra before becoming IO-bound. In

other words, all write operations go to the commit log, but Cassandra is so

https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsTuneJVM.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 16 of 52

efficient in writing, that the CPU becomes the limiting factor. Cassandra is highly

concurrent and uses as many CPU cores as available.

When choosing instance types with Amazon EC2 for write-heavy workloads, you

should look at instance types with at least 4 vCPUs. Although this is a good

starting point, we recommend that you test a representative workload before

settling on the instance type for production.

Planning Cassandra Clusters on AWS
This section discusses how you can apply Cassandra features to AWS services to

deploy Cassandra in the most optimal and efficient way.

Planning Regions and Availability Zones
The AWS Cloud Infrastructure is built on Regions and Availability Zones (“AZs”).
10A Region is a physical location in the world where we have multiple Availability

Zones. Availability Zones consist of one or more discrete data centers, each with

redundant power, networking and connectivity, housed in separate facilities.

These Availability Zones offer you the ability to operate production applications

and databases which are more highly available, fault tolerant and scalable than

would be possible from a single data center (learn more). This also helps

customers implement regulatory compliance and geographical expansion.

You can use AWS’ global infrastructure to manage network latency and to

address your regulatory compliance needs. For example, data in one region is not

automatically replicated outside that region. If your business requires higher

availability, it is your responsibility to replicate data across regions.

When you are building your Cassandra cluster, select the same region for your

data and application to minimize application latency. For details on the exact

location of AWS regions, visit the Region Table. 11

Unlike legacy master-slave architectures, Cassandra has a master less

architecture in which all nodes play an identical role, so there is no single point of

failure. Consider spreading Cassandra nodes across multiple Availability Zones to

enable high availability. By spreading nodes across Availability Zones, in the case

of a disaster, you can still maintain availability and uptime.

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 17 of 52

Cassandra clusters can be made Amazon EC2–aware and thus support high

availability by defining an appropriate snitch setting through the endpoint_snitch

parameter in cassandra.yaml.12 This parameter can be either set to Ec2Snitch13

or Ec2MultiRegionSnitch.14 Ec2Snitch allows you to build clusters within a single

region, and Ec2MultiRegionSnitch allows you to deploy clusters in multiple AWS

regions.

Setting up a snitch allows Cassandra to place

the replicas for data partitions on nodes that are

in different Availability Zones. Thus, if your

keyspace has a replication factor of 3 in the US

East (N. Virginia) region, us-east-1, then the

Ec2Snitch setting allows your data to be

replicated across three Availability Zones in us-

east-1. For example, if you set up a cluster in

Availability Zones us-east-1a, us-east-1b, and

us-east-1c and set a replication factor of 3 at the keyspace level, then each write

operation will be replicated across nodes in these three Availability Zones.

The snitch setting thus provides higher availability by allowing Cassandra to

place replicas of your data in different Availability Zones when a write operation

happens.

Cassandra also has seed nodes, which are initially consulted by a new node that

wants to bootstrap and join the Cassandra ring. In the absence of a seed node,

bootstrapping does not happen and the node does not start. We highly

recommend that you spread your seed nodes across multiple Availability Zones.

In this situation, even if an Availability Zone goes down, the new nodes can

bootstrap from the seed nodes from another Availability Zone.

Cassandra clusters can also be made datacenter-aware and rack-aware.

“Datacenter” in Cassandra terminology translates to a “region” in AWS terms,

and “rack” translates to an “Availability Zone” in AWS terms.

Cassandra clusters can be designed to be highly resilient to failures by leveraging

regions and Availability Zones in AWS coupled with the EC2 snitches that come

packaged with the software. For example, with a three-AZ design, requests can

still continue to succeed in the event of an entire Availability Zone failure. You

Basic Tip

If you are just starting out with

Cassandra, plan for cluster

growth from the beginning.

Choose Ec2MultiRegionSnitch to

avoid complications when you

decide to expand your cluster.

https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchesAbout_c.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchEC2_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchEC2MultiRegion_c.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 18 of 52

can create live backups of your cluster by designing a cluster in another AWS

region and let Cassandra handle the asynchronous replication.

Planning an Amazon Virtual Private Cloud
Amazon Virtual Private Cloud (Amazon VPC) lets you provision a logically

isolated section of the AWS cloud where you can launch AWS resources in a

virtual network that you define. You have complete control over your virtual

networking environment, including selection of your own IP address range,

creation of subnets, and configuration of route tables and network gateways.

We highly recommend that you launch your Cassandra cluster within a VPC. One

of the biggest benefits that VPC offers for Cassandra workloads is the enhanced

networking feature. Enabling enhanced networking on your instance results in

higher performance (more packets per second), lower latency, and lower jitter. At

the current time, C3, C4, D2, I2, M4 and R3 are the instance families for which

enhanced networking is supported within a VPC.15 In order to enable this

feature, you must also launch a hardware virtual machine (HVM) AMI with the

appropriate SR-IOV driver.

Best practices for setting up Cassandra on VPC

First, create a large enough VPC with a /16 Classless Inter-Domain Routing

(CIDR) block (for example, 10.0.0.0/16) to accommodate a sufficient number of

instances within a single VPC. This approach does not impact performance in any

way, and it gives you the room to scale when needed. If you instead create a

smaller VPC, for example 10.0.0.0/28, which has up to 14 IP addresses, then you

have to create a new VPC. Cassandra clusters scale with data by throwing more

capacity at it, and having a large enough VPC will make it easier to scale.

You can define both public and private subnets within a VPC. We recommend

that you host your Cassandra clusters in a private subnet within your VPC, which

does not have Internet access. You can then set up a Network Address

Translation (NAT) instance in a public subnet to allow the cluster nodes to talk to

the Internet for software updates.

Because subnets do not span across Availability Zones, plan to create multiple

subnets, depending on the replication factor you intend to configure for your

Cassandra keyspace.16 For example, if your replication factor is 3, you can create

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html#enhanced_networking_instance_types
http://docs.datastax.com/en/cql/3.1/cql/cql_reference/create_keyspace_r.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 19 of 52

three subnets, each in a different Availability Zone, to host your cluster. Another

thing to account for while planning subnets for your Cassandra cluster is that

Amazon reserves the first four IP addresses and the last IP address of every

subnet for IP networking purposes.

If you have administrators who need Secure Shell (SSH) access to the nodes in

the cluster for maintenance and administration, the industry standard practice is

to configure a separate bastion host.

If you already have a Cassandra cluster with AWS, but on the EC2-Classic

platform, we recommend migrating the cluster over to VPC to leverage the higher

performance features and enhanced security offered by VPC. To make this

migration simple, AWS offers ClassicLink, which allows you to enable

communication between EC2-Classic and VPC and to incrementally migrate your

Cassandra cluster to VPC with no downtime.17 We will discuss more about this

feature in the Migration section.

Planning Elastic Network Interfaces
An elastic network interface (ENI) is a virtual network interface that you can

attach to an instance in a VPC in a single Availability Zone. You can create an

ENI, attach it to an instance, detach it from that instance, and attach it to another

instance in the same Availability Zone. When you do so, the attributes of the ENI

follow as it is detached and reattached. When you move an ENI from one

instance to another, network traffic is redirected to the new instance. The

maximum number of ENIs you can attach per instance depends on the instance

type, as discussed in Elastic Network Interfaces (ENI) in the Amazon EC2 User

Guide.18

When working with Cassandra, ENIs are generally used to support seed node

configuration. Seed node IP addresses are hard-coded in the Cassandra .yaml

configuration file. If a seed node fails, the yaml configuration on every node in

the cluster needs to be updated with the IP address of the new seed node that is

brought up in place of the failed seed node. This could create operational

difficulties with large clusters.

However, you can avoid this scenario if you attach an ENI to each seed node and

add the ENI IP address to the list of seed nodes in the .yaml configuration file. If

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html#differences-ec2-classic-vpc
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html#differences-ec2-classic-vpc
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-classiclink.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 20 of 52

you do so, in the event of failure of a seed node, you can automate in such a way

that the new seed node takes over the ENI IP address programmatically. The

automation would typically involve using the AWS CLI and running ENI specific

commands to perform the detach and attach.

Note that attaching an ENI to an EC2 instance does not increase the network

bandwidth available to the instance.

Planning High-Performance Storage Options
Understanding the total I/O required is key to selecting an appropriate storage

configuration on AWS. Most of the I/O driven by Cassandra is sequential for a

write-heavy workload. However, read-heavy workloads require random access,

and if your working set does not fit into memory, your setup will likely become

I/O bound at some point. Hence, making a good decision initially when you are

choosing your storage is important.

AWS offers two main choices to construct the storage layer of your Cassandra

infrastructure: Amazon EBS volumes and Amazon EC2 instance stores.

Amazon Elastic Block Store (EBS) Volumes

Amazon EBS provides persistent block-level storage volumes for use with

Amazon EC2 instances in the AWS cloud. Each Amazon EBS volume is

automatically replicated within its Availability Zone to protect you from

component failure, offering high availability and durability.

Amazon EBS volumes offer the consistent and low-latency performance needed

to run your workloads. Amazon EBS volumes provide a great design for systems

that require storage performance variability.

There are two types of Amazon EBS volumes you should consider for Cassandra

deployments:

 General Purpose (SSD) volumes offer single-digit millisecond latencies,

deliver a consistent baseline performance of 3 IOPS/GB to a maximum of

10,000 IOPS, and provide up to 160 MB/s of throughput per volume.19

file:///C:/Users/jessk/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/5A74BOIP/aws.amazon.com/ebs
http://aws.amazon.com/ec2/instance-types
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#EBSVolumeTypes_gp2

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 21 of 52

 Provisioned IOPS (SSD) volumes offer single-digit millisecond latencies,

deliver a consistent baseline performance of up to 30 IOPS/GB to a

maximum of 20,000 IOPS, and provide up to 320 MB/s of throughput per

volume. These features making it much easier to predict the expected

performance of a system configuration.20

DataStax recommends both these EBS volume types for Cassandra workloads.

For more information, see the DataStax documentation.21 The magnetic volume

types are generally not recommended for performance reasons.

At minimum, using a single EBS volume on an

Amazon EC2 instance can achieve 10,000 IOPS or

20,000 IOPS from the underlying storage,

depending upon the volume type (GP2 or PIOPS).

For best performance, use Amazon EBS–optimized

instances.22

An Amazon EBS–optimized instance uses an

optimized configuration stack and provides

additional, dedicated capacity for Amazon EBS I/O.

This optimization provides the best performance for your EBS volumes by

minimizing contention between Amazon EBS I/O and other traffic from your

instance.

EBS-optimized instances deliver dedicated throughput between Amazon EC2 and

Amazon EBS, with options between 500 and 4,000 megabits per second (Mbps)

depending on the instance type used. For example, an EBS-optimized instance in

a Cassandra setup can provide data volume at 4 TB and 10,000 IOPS with a

commit log at 1 TB and 3000 IOPS.

Tip

DataStax recommends GP2 and

Provisioned IOPS EBS volume

types for Cassandra workloads.

For more information, see the

DataStax documentation

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#EBSVolumeTypes_piops
http://docs.datastax.com/en/cassandra/2.1/cassandra/planning/architecturePlanningEC2_c.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/planning/architecturePlanningEC2_c.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 22 of 52

Figure 3: Single EBS Volume

To scale IOPS further beyond that offered by a single volume, you can use

multiple EBS volumes, as shown following.

Figure 4: Multiple EBS Volumes for Data

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 23 of 52

You can choose from multiple combinations of volume size and IOPS, but

remember to optimize based on the maximum IOPS supported by the instance.

In the configuration just shown, you might want to attach volumes with

combined IOPS beyond the IOPS offered by the EBS-optimized EC2 instance. For

example, one Provisioned IOPS (SSD) volume with 16,000 IOPS or two General

Purpose (SSD) volumes with 8,ooo IOPS striped together matches the 16,000

IOPS offered by a c4.4xlarge instance through its EBS-optimized dedicated

bandwidth.

Instances with a 10 Gbps network and enhanced

networking can provide up to 48,000 IOPS and

800 MB/s of throughput to Amazon EBS volumes.

For example, with these instances, five General

Purpose (SSD) volumes of 10,000 IOPS each can

saturate the link to Amazon EBS.

You should also note that EBS-optimized

connections are full duplex, and can drive more

throughput and IOPS in a 50/50 read/write

workload where both communication lanes are

used.

The best practice while using EBS volumes for Cassandra is to use separate

volumes for commit log and data directories. This approach will allow you to

scale better.

Amazon EBS also provides a feature for backing up the data on your EBS volumes

to Amazon S3 by taking point-in-time snapshots.

Amazon EC2 Instance Stores

Many Amazon EC2 instance types can access disk storage located on disks that

are physically attached to the host computer. This disk storage is referred to as an

instance store. If you’re using an instance store on instances that expose more

than a single volume, you can stripe the instance store volumes (using RAID0) to

enhance I/O throughput. Remember, if the instance is stopped, fails, or is

terminated, you’ll lose all your data. Therefore, we strongly recommend setting

Best Practice Tip

The general best practice when

using EBS volumes for storage is

to use separate volumes for the

commit log and data. This

approach will allow you to scale

better.

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 24 of 52

up replication across multiple instances across Availability Zones for your

Cassandra cluster.

When using a logical volume manager (for example, mdadm or LVM), make sure

that all metadata and data are consistent when you perform the backup.

Planning Instance Types Based on Storage Needs
Before we go into instance type recommendations, let us first go over an example

to understand the storage and compute requirements to handle a Cassandra

workload. Let us assume that we have a single table (column family) for a cluster

to keep things simple.

Assumptions and Storage Formula

We will make the following assumptions for this example:

 100 columns per row.

 10,000 write operations per second and 500 read operations per second

(95 percent writes and 5 percent reads).

 For the sake of simplicity, we will also assume that the reads and writes

per second is uniform throughout the day.

 The total size of each column name and column value is 30 bytes.

 We are storing time series data, and hence the columns are all set to

expire. We set the expiration to 1 month because we do not need data older

than a month in our table.

 The average size of a primary key is 10 bytes.

 The replication factor is 3.

 The compaction strategy is size-tiered (50 percent storage overhead).

Let us calculate the storage requirements for one month for this example:

Storage requirement = (((Number_of_columns * (column_name_size

+ column_value_size + 23)) + 23) * Number_of_rows +

Number_of_rows * (32 + primary_key_size)) * Replication_Factor

* (1 + Compaction_Overhead)/1024/1024/1024/1024 TB

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 25 of 52

This formula can in general be applied to calculate your storage requirements at a

column family level.

Note also these important points:

 The storage overhead per column is 23 bytes for a column that expires, as

with time series.

 The storage overhead per row is 23 bytes.

 The storage overhead per key for the primary key is 32 bytes.

 For a regular column, the storage overhead is 15 bytes.

 The total rows written per month are as follows:

10,000*86400*30 = 25920000000

Here are our variables:

 Number_of_columns = 100

 column_name_size = 20

 column_value_size = 10

 Number_of_rows = 25920000000

 Primary_key_size = 10

 Replication_Factor = 3

 Compaction_Overhead = 50 percent(0.5)

Applying the preceding formula with the values from our example preceding, the

storage requirement equals 569 TB. Thus, we will need at least 569 TB of disk

space to provision for this cluster.

Let us now compare our options available on AWS to satisfy this requirement.

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 26 of 52

Using I2 Instances

The most common instance type that customers use for Cassandra on AWS is the

I2 instance. I2 instances with high I/O are optimized to deliver tens of thousands

of low-latency, random IOPS to applications. The I2 instance type offers enough

disk, IOPS, and memory to allow you to run a low latency workload for both read

and write operations. I2 also supports enhanced networking. This instance type

tends to get more frequently used when there are large amounts of data (in the

range of terabytes) and IOPS (in the multiple tens of thousands) involved.

Looking at the I2 specifications, assuming use of the US East (N. Virginia) us-

east-1 region, and accommodating 10 percent overhead for disk formatting, we

can determine that for the storage we discussed previously, we will need 405 I2

instances (569/((2*800*.9)/1024)).23 This workload will cost you $497,178

(405*1.705*720) for a month to run. This figure does not include data transfer

charges, which are billed separately. We are also not including any calculations

for commitlog for simplicity and assume that the data and commitlog will be

collocated on the same drives.

However, do we really need 405 nodes for processing 10,000 write operations

and 500 read operations per second on the I2? The answer might be no. In fact,

we might be significantly overprovisioning every compute resource available to us

other than local storage. We can move to a larger I2 instance with more local

storage. But that might not help with cost. What might be an alternative option

here?

If we can somehow decouple storage from compute, then we will have a viable

scenario where we can provision optimum storage and compute power based on

what is required. We can do this decoupling with EBS. The idea here is to use

EBS to achieve the same or equivalent level of performance with lesser cost.

Decoupling with EBS

To perform this decoupling, we can provision EBS GP2 volumes, which can give

us 3 IOPS/GB provisioned. Let us follow the DataStax recommendation for

maximum data per node for Cassandra (3 to 5 TB) and assign 4 TB EBS GP2

volumes per node. This setup will give us 10,000 IOPS.

https://aws.amazon.com/ec2/pricing/

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 27 of 52

We also need to allocate storage for our commit logs, because keeping them on

separate volumes provides better performance. We will allocate a 500 GB volume

for the commit log on each node. This allocation will give about 1500 IOPS

guaranteed, with a burst capability of up to 3000 IOPS for 30 minutes,

depending on how much IOPS was saved earlier.

Now, we have to choose an instance type that allows enhanced networking and

EBS-optimized bandwidth. There is an additional charge for EBS-optimized

instances on many instance types, but AWS has recently launched new instance

types that are EBS-optimized by default, with no extra cost for EBS-optimized

bandwidth.

Using C4 Instances with EBS

The C4 instance is becoming a popular choice for running Cassandra on EBS. For

an example, see the Crowd Strike presentation from re:Invent 2015.24 C4 does

not have any local storage and hence EBS must be attached for storage. In this

specific case, where we have 95 percent write operations, C4 might be a great fit

because you normally run out of CPU before you run out of IO for these write-

skewed workloads.

We will also need an instance type in C4 that supports at least 3000 IOPS for the

normal write throughput, plus compaction IOPS through its EBS-optimized

bandwidth. Remember that we also recommended a minimum memory

requirement of 32 GB of DRAM for production workloads. C4.4X fits into the

CPU, memory, and IOPS requirements just described.

If we price this option, we require 143 C4.4X instances (4 TB per node for a total

of 569 TB). We will get 572 TB (143*4 TB).

Now, we need 500 GB of commit logs per node. Thus, we will require 72 TB GP2

just for hosting commit logs. Adding both data and commit logs (572 TB + 72

TB), we will need to provision 644 TB for EBS GP2.

Calculating EC2 costs for 143 C4.4XL instances, assuming the US East (N.

Virginia) us-east-1 region, and using the current pricing, we come up with the

following:25

143 C4.4X = 143*0.838*720 = $86,280.48

https://www.youtube.com/watch?v=1R-mgOcOSd4
https://aws.amazon.com/ec2/pricing/

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 28 of 52

Calculating EBS volume costs, we come up with the following:

644 TB EBS GP2 = $65,946

Our total cost is EC2 cost plus EBS cost, which equals $152,226.

Comparing this with the cost of running I2, $497,178, we find that the C4.4X plus

EBS option is about 3.2 times less expensive compared to the I2 option, without

compromising on performance and reliability.

Cost Optimization for C4 Plus EBS and for I2

Now, when you settle on instance types for your Cassandra cluster, AWS offers

pricing options such as Reserved Instances to further optimize your costs.

For example, let's say you decide to run the C4.4X plus EBS configuration for

your cluster and you are happy with the cluster performance over a couple of

months. At this point, with a stable instance choice for your cluster, it might be a

good idea to make reservations and optimize costs. If you decide to make a three-

year partial upfront reservation, it will save you 59 percent over on demand.

Here is the revised calculation:

143 C4.4X = 143*0.3476*720 = $35,788.89

644 TB EBS GP2 = $65,946

Our total cost now is $101,734.89. Thus, you can bring your cost down from

$152,226 to $101,734.89 with a three-year reservation.

Now that we know the best optimized cost for the C4.4X plus EBS GP2

configuration, let us revisit the I2 option and apply reserved pricing to see how

close we can get.

With three-year partial up-front on I2, you can save 74 percent over on demand,

which means you only pay 26 percent over the on-demand cost. The cost drops to

$129,266 ($497,178/4). Now the comparison between C4 option and the I2

option does not look too bad, but the C4 option is still about 1.2 times less

expensive than the I2 option.

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 29 of 52

Summary for Example workload

Using R3 or I2 Instances with Read-Heavy Workloads

If you are running a read-heavy workload, then you should look at using either

the R3 instance family with or without EBS storage, or the I2 instance family.

Cassandra depends heavily on the operating system’s file system cache for read

performance, and R3 instances deliver high sustained memory bandwidth with

low network latency and jitter.

R3 instances come by default with attached local storage. If you find that your

storage requirements are small enough after considering replication and storage

overhead, then you might not need EBS for storage. If you do plan on using R3

with EBS, you should note that R3 instance types are not EBS-optimized by

default and that there is an additional hourly cost when EBS optimization is

enabled for R3 instances.

As an example of using R3 instances, suppose you want to store a total of 1 TB of

data and have a high read throughput requirement. Given these factors, you can

provision four r3.4xl, depending on your load tests. This approach costs you

about $4000 per month. In this case, you do not want to reduce the number of

nodes for availability reasons.

If you do not require the high memory and CPU offered with r3.4xl but still

require 1 TB for storage and want to optimize this cost further, you can use four

i2.x nodes and reduce the cost to about $2500.

Writes/Sec Reads/Sec Replication

Factor

Storage(TB) Avg.Row

Size(KB)

Instance

Count/Type

Cost

10000 500 3 570 3 405/I2 $497,178

10000 500 3 570 3 405/I2/3-Yr RI $129,266

10000 500 3 644 3 143/C4.4XL $152,226

10000 500 3 644 3 143/C4.4XL/3-Yr

RI

$101,735

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 30 of 52

For another example, suppose you want to store 6 TB of data and have a high

read throughput requirement. In this case, you can provision 20 r3.4xl instances,

which costs you about $20,000. However, let’s assume you performed load tests

and determined that from a compute perspective, six r3.4xl instances are more

than enough to handle your workload. You also determine that most of the

workload is memory bound because of the amount of DRAM available on r3.4x

instances and that you will need a maximum of 2000 IOPS per instance. At this

point, you can leverage EBS GP2 volumes and provision 1 TB of GP2 per instance.

Doing this will bring down the number of nodes from 20 to 6 and bring your

costs down to about $7000, which is about one-third the cost of using local

storage for the same workload.

In general, if you are looking to drive over 20,000 IOPS per node for your

Cassandra cluster, I2 instance types might be a better fit.

Horizontally Scaling Cassandra with EBS

As an additional note, if your workload requires pushing the disk bandwidth over

the maximum EBS-optimized bandwidth for a specific instance type, you should

leverage the horizontally scalable distributed nature of Cassandra and add more

nodes to spread out the load. Spreading the load in this way allows your cluster to

scale to virtually any amount of IOPS while using EBS at reasonable cost

Deploying Cassandra on AWS
Cassandra provides native replication capabilities for high availability and can

scale horizontally, as the following illustration shows.

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 31 of 52

Figure 5: Highly Available Cassandra Cluster

Although you can scale vertically by using high-performance instances instead of

a replicated and sharded topology, vertically scaled instances don’t provide the

significant fault tolerance benefits that come with a replicated topology. Because

AWS has a virtually unlimited pool of resources, it is often better to scale

horizontally.

Setting Up High Availability
The preceding architecture diagram shows a basic high-availability configuration

for a Cassandra cluster. We highly recommend this setup for high availability.

The cluster is in a large VPC with a /16 CIDR block. There are three private

subnets in different Availability Zones. The private subnets each have a large

enough CIDR block (/24) to accommodate the nodes in the cluster. We also have

three public subnets configured. These public subnets host the NAT, bastion

hosts, and OpsCenter, which is the Cassandra utility that monitors a running

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 32 of 52

Cassandra cluster. The NAT is useful when the cluster nodes in the private subnet

need to communicate with the external world for things like software updates.

Bastion hosts allow SSH access to your cluster nodes for administrative purposes.

To provide access control, our basic setup also associates each layer with a

security group.

The architecture diagram shows the seed nodes separately to emphasize the need

for having at least one seed per Availability Zone. However, we recommend not to

make all the nodes seeds, which can negatively affect your performance due to

the use of Gossip. The general rule of thumb is to have at most two seed nodes

per Availability Zone.

Cassandra has multiple consistency modes for read and write operations.26 In a

cluster with replication factor of 3, LOCAL_QUORUM operation for read or write

allows an operation to succeed when two out of three replicas in a single region

signal a success. Because the cluster is spread across three Availability Zones,

your local quorum read and write operations continue to be available even during

the improbable event of an Availability Zone failure. They also remain available

during node failures.

In our basic cluster, OpsCenter nodes are set up in a failover configuration. There

are two OpsCenter nodes, which monitor each other on stomp channels.27 One of

them is configured as a primary node. In the event of a failure on the primary, the

backup node takes over the role of the primary.

So far, the architecture described is manual. If a node in the Cassandra cluster

fails, you have to manually replace it and configure a new node in its place. If the

OpsCenter primary node fails, the backup node takes over, but you will need to

use the IP address or Domain Name System (DNS) address of the new node. You

also need to replace the failed primary node. If the bastion host fails, the

replacement has to be manually performed.

Automating This Setup
You can automate most of this setup in AWS. Let us take one layer at a time to

show you the AWS components that can be used for this automation.

http://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
http://stomp.github.com/

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 33 of 52

Let us take the Cassandra cluster first. The steps taken to replace a failed node in

Cassandra are pretty static, and manual actions with static steps can be

automated. Thus, if you are able to bundle the steps for dead node replacement,

you can use Auto Scaling to automate these steps for multiple nodes.28

To do so, you can set up an Auto Scaling group with minimum, maximum, and

desired size set to the same size.29 Doing this will allow Auto Scaling to bring up a

new node in the place of a failed node when a node fails. The automation that you

built can be added to bootstrap the node with the software and induct it into the

ring by replacing the failed node. Once this is complete, Cassandra software takes

care of bringing the data in the node into the current state by streaming data

from other nodes in the cluster. You might need to define separate Auto Scaling

groups for seeds and nonseeds. If you require more control over placement, you

can choose to create an Auto Scaling group for each Availability Zone and

maintain the distribution.

Similarly, you can add the bastion hosts to an Auto Scaling group to allow

replacement of failed nodes if there is an Availability Zone or node failure.

For information on how to create a NAT gateway for your cluster, refer to NAT

Gateway in the Amazon VPC User Guide.30

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/WhatIsAutoScaling.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingGroup.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-nat-gateway.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-nat-gateway.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 34 of 52

Figure 6: Highly Available OpsCenter

The preceding diagram shows the setup that we recommend for OpsCenter in a

high availability configuration. The OpsCenter nodes have a master-slave

configuration. To always map the master to one static IP address, you can use an

Elastic IP address.31 For a failover approach, you can deploy the OpsCenter

master and slave nodes in individual Auto Scaling groups with a minimum,

maximum, and desired size of 1. Doing this will make sure that if Auto Scaling

terminates a node in the event of a node failure, Auto Scaling will bring a new

node to replace the failed node. The automation can then configure the new node

to become the new backup node. During a failover event, the automation should

be able to detect the failover and remap the elastic IP to the new master. This

approach will allow you to use the static Elastic IP to access OpsCenter for

monitoring.

Let us now look at how the cluster architecture looks like with Auto Scaling for

Cassandra, shown in the following diagram.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 35 of 52

Figure 7: Highly Available Cassandra with Auto Scaling

The best practice is to keep the seed node list consistent across all nodes in the

cluster. You might be able to get a list of IP addresses for the seed nodes during

the initial launch of the cluster. When a seed node fails and a new node is brought

up in its place, the new node is assigned a new IP address. This functionality

means that you will need to replace the seed node list across all other nodes in the

cluster to reflect the new IP address. Doing this can be a challenge on multiple

levels.

You can handle this by creating an Elastic Network Interface (ENI).32 You can

create one ENI per seed node, as described earlier in this whitepaper. Each ENI

comes with a static private IP address, and you can add the IP address of the ENI

to the seed list. Automation for the seed nodes can then attach the ENI to the new

instance spun up by the Auto Scaling group to replace the failed seed instance.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 36 of 52

Setting Up for Security
Our high availability setup addresses security concerns. In this setup, nodes in

each private subnet have a security group to control inbound network access.

However, nodes in the private subnets do not have a route to the Internet. For

software updates, when the Cassandra nodes need to talk to the Internet, you can

create a NAT instance in a public subnet or configure NAT Gateway that can

route the traffic from the Cassandra cluster in the private subnet.

If you have a need to use SSH to access a node for troubleshooting, a bastion host

in the public subnet will allow access to any node in the private subnets. For

information on how you can configure a bastion host for AWS, see this example

on the AWS Security Blog.33

In this setup, the OpsCenter hosts are configured with security groups that allow

access only from specific instances in your network.

If your compliance requirements require you to have encryption at rest for your

Cassandra cluster, you can leverage Amazon EBS volumes with encryption

enabled. Amazon EBS encryption uses AWS Key Management Service (AWS

KMS) customer master keys for encryption.34 The encryption occurs on the

servers that host EC2 instances, providing encryption of data in transit from EC2

instances to EBS storage. For more details, refer to the EBS encryption

documentation.35

Encrypting data in transit can be configured following the DataStax

documentation.36

The following table shows the default set of ports for Cassandra. You can also

choose to replace these default ports with nondefault ones. Using these ports will

allow you to build a minimal privilege model and further enhance security

through the security groups.

https://blogs.aws.amazon.com/security/post/Tx3N8GFK85UN1G6/Securely-connect-to-Linux-instances-running-in-a-private-Amazon-VPC
https://blogs.aws.amazon.com/security/post/Tx3N8GFK85UN1G6/Securely-connect-to-Linux-instances-running-in-a-private-Amazon-VPC
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/security/secureSslEncryptionTOC.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/security/secureSslEncryptionTOC.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 37 of 52

Port number Description Port Type Whitelist On

22 SSH port Public All nodes

8888 OpsCenter website. The opscenterd

daemon listens on this port for HTTP

requests coming directly from the

browser. Public OpsCenter servers

7000 Cassandra internode cluster

communication. Private Cassandra cluster nodes

7001 Cassandra Secure Socket Layer

(SSL) internode cluster

communication. Private Cassandra cluster nodes

7199 Cassandra JMX monitoring port. Private Cassandra cluster nodes

9042 Cassandra client port. Private Cassandra cluster nodes

9160 Cassandra client port (Thrift). Private Cassandra cluster nodes

61620 OpsCenter monitoring port. The

opscenterd daemon listens on this

port for Transmission Control

Protocol (TCP) traffic coming from the

agent. Private

Cassandra cluster nodes,

OpsCenter servers

61621 OpsCenter agent port. The agents

listen on this port for SSL traffic

initiated by OpsCenter. Private

Cassandra cluster nodes,

OpsCenter servers

Monitoring by Using Amazon CloudWatch
Amazon CloudWatch is a monitoring service for AWS cloud resources and

applications you run on AWS. You can use Amazon CloudWatch to collect and

track metrics, to collect and monitor log files, and to set alarms. Amazon

CloudWatch can send an alarm by Amazon Simple Notification Service (Amazon

SNS) or email when user-defined thresholds are reached on individual AWS

services. For example, you can set an alarm to warn of excessive CPU utilization.

Alternatively, you can write a custom metric and submit it to Amazon

CloudWatch for monitoring. For example, you can write a custom metric to check

for current free memory on your instances, and to set alarms or trigger automatic

responses when those measures exceed a threshold that you specify. You can also

publish JMX or NodeTool metrics to CloudWatch. You can then configure alarms

to notify you when the metrics exceed certain defined thresholds.

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 38 of 52

To publish metrics for Cassandra into CloudWatch, you should use AWS Identity

and Access Management (IAM) roles to grant permissions to your instances. You

can then use the AWS Command Line Interface (AWS CLI) to publish any

metrics directly into CloudWatch. The following example demonstrates how to

publish a simple metric named CompactionsPending into CloudWatch with a

value of 15.

aws cloudwatch put-metric-data --metric-name

CompactionsPending --namespace Cassandra --timestamp 2015-

12-13T19:50:00Z --value 15 --unit

For further information, see the DataStax documentation on monitoring.37

https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_monitoring_c.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 39 of 52

Using Multi-Region Clusters
An example multi-region cluster in Cassandra appears following.

Figure 8: Multi-Region Cassandra Cluster

To set up multi-region clusters, you can enable multi-region cluster

communication through Internet Protocol Security (IPsec) tunnels by configuring

a virtual private network (VPN). This approach will allow you to use your

cluster’s private IP address for cross-region communication. You can use either

the Ec2Snitch or gossippingpropertyfilesnitch for your snitch when using a VPN

for cross-region communication. For more information on setting this up, see the

AWS article Connecting Multiple VPCs with EC2 Instances (IPSec).38

You can also allow cross-region communication using public IP addresses over

the Internet. You should consider using EC2MultiRegionSnitch for this setup.

This snitch automatically sets the broadcast address from the public IP address

http://aws.amazon.com/articles/5472675506466066

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 40 of 52

obtained from the EC2 metadata API. You can secure this communication by

configuring SSL for your internode communication. For more information, see

enabling node-to-node encryption in the DataStax documentation.39 However,

you should set the listen_address parameter to use private IP addresses. This

approach allows intraregion communication to use private IP addresses instead

of public IP addresses.

Another best practice we recommend is to perform read and write operations at a

consistency level of LOCAL_QUORUM. If you instead use a global quorum, the

read and write operations have to achieve a quorum across AWS regions, which

might cause an increase in latency on the client side.

Figure 9: Multi-Region Write Request

The illustration preceding shows how the client performs a write operation using

the local quorum in a multi-region write scenario. The following list shows the

process:

http://docs.datastax.com/en/cassandra/2.1/cassandra/security/secureSSLNodeToNode_t.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 41 of 52

1. A client sends a write request to a coordinator node in the cluster.

2. The coordinator node sends the request to the appropriate data nodes. At

this point, if two out of three nodes in the local region return an

acknowledgement, the client’s write operation succeeds.

3. The local coordinator forwards the write operation asynchronously to a

remote coordinator in the other region.

4. The remote coordinator now sends the data to the remote replicas. The

remote replica nodes acknowledge back to the local coordinator.

If a node or region goes offline, hinted handoff can complete a write operation

when the node comes back up. You can run nightly repair jobs to keep the regions

consistent.40

Performing Backups
To take a snapshot of your keyspace for backup purposes, you can use the

NodeTool snapshot command. This command will create hard links of your

SStables in a snapshots directory inside your keyspace data directory. Note that

this command will create a snapshot only on the single node on which the

command is run. To snapshot an entire cluster, the command needs to be run on

all the nodes in the cluster using parallel SSH or by specifying hostname/IP

address to the NodeTool command from a single instance. The SStables can then

be backed up to Amazon S3 or Amazon EBS. With EBS, you can snapshot the

volume and delete the volume to save on costs.

The preceding method requires significant effort from your side to build, test, and

automate a working backup and restore process. If you’d prefer to avoid that

effort, consider using the Netflix-built and open-sourced tool Priam.41 This tool is

great for Cassandra backup and recovery. Priam backs up Cassandra to S3

incrementally and provides APIs to restore and recover the cluster from S3.

Another simple approach for backups that works with Amazon S3 is to use

tablesnap tool. This tool simply watches for new files in the keyspace directory

and uploads those files to S3 from each node.42

https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_about_hh_c.html
https://github.com/Netflix/Priam
https://pypi.python.org/pypi/tablesnap

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 42 of 52

Building Custom AMIs
Creating your own custom Amazon Machine Image (AMI) for your Cassandra

clusters is a good practice. However, you might not want to start from scratch

when you are bootstrapping a new Cassandra node.

To create a custom AMI for your Cassandra clusters, you should start with

identifying and building your foundation AMI. Here, one of the steps might be to

start with a base Linux distribution. You can then build a base AMI on top of the

foundation AMI, for example by installing a stable JDK, required agents, and so

on. When you have a base AMI, you can run customizations on top of it and build

a custom AMI. The custom AMIs that contain the Cassandra software packages

installed can be used as a golden image (that is, a template) during your

deployment.

As your organization grows bigger, setting up AMIs might help support many of

your processes. To learn more about AMI management on AWS, refer to this

whitepaper.43

Migration into AWS
The following steps migrate an existing Cassandra cluster into EC2 on AWS with

zero downtime.

1. Decide on a good starting point for your instance type and storage for this

cluster based on the recommendations made earlier in this whitepaper.

2. Test and benchmark your instance for a representative workload either

using cassandra-stress or YCSB (described following), Jmeter, or your

favorite tool.

3. Once you are satisfied with the instance type and storage, provision a new

Cassandra cluster in EC2 in the region of your choice. Note that you might

need to change your snitch setting to use either EC2Snitch or

EC2MultiRegionSnitch, as described earlier.

4. You should now configure your schema on the new cluster in EC2. This

schema will be duplicated from your existing cluster.

https://d0.awsstatic.com/whitepapers/managing-your-aws-infrastructure-at-scale.pdf

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 43 of 52

5. For a more consistent network experience than the Internet, you might

choose to use AWS Direct Connect.44

6. Make sure the client is using LOCAL_QUORUM on the existing cluster.

This step makes sure that you do not experience elevated latencies because

of the addition of a new datacenter.

7. Update the keyspace to replicate data to the EC2 cluster asynchronously.

This step will allow the Cassandra cluster on EC2 to get the new write

operations.

8. Validate your application logs to make sure that there are no errors and

that application latencies are normal.

9. Run the NodeTool rebuild command on the nodes on the EC2 cluster. The

rebuild operation can be I/O intensive. If you want this operation to have

less impact on the existing cluster, you should consider running the

operation on one node at a time. But if your cluster can take additional IO,

you can always ramp up and run the operation on multiple nodes at a

time.

10. Once the rebuild is completed on all EC2 nodes on the AWS side, you will

have all the data synced on the EC2 cluster. Perform validation to make

sure the new cluster is working as expected.

11. You can optionally choose to increase the consistency level for write

operations to EACH_QUORUM. Doing this will allow the write operations

to succeed only if both your current cluster in your datacenter and the EC2

cluster acknowledge they have received the write operation. However, this

approach can result in higher latency on your client side.

12. If you enabled EACH_QUORUM, monitor your application logs to make

sure that the latencies are as expected, that there are no errors, and that

the cluster is responding normally to requests.

13. At this point, you can switch your application to talk to the EC2 cluster.

14. You should update your client to reduce the consistency level back to

LOCAL_QUORUM.

15. Again, monitor your application logs to make sure that the latencies are as

expected, that there are no errors, and that the cluster is responding

normally to requests.

https://aws.amazon.com/directconnect/

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 44 of 52

16. If you see any issues, you can use the steps described in this section to

perform a rollback.

17. You can optionally migrate your client stack over to AWS to reduce

network latencies.

18. You can now decommission the old cluster.

Analytics on Cassandra with Amazon EMR
To help perform analytics on Cassandra, DataStax has released an open source

Apache Spark Cassandra driver.45 Apache Spark is a fast and general processing

engine compatible with Hadoop data, and the DataStax driver allows you to use

Cassandra column families as Apache Spark Resilient Distributed Datasets

(RDDs) . You can use this driver to build Spark applications that can read from

and write to Cassandra, allowing you to combine the power of the massively

parallel processing in-memory analytic processing capabilities of Spark with

Cassandra.

To manage Apache Spark clusters, consider using Amazon Elastic MapReduce

(Amazon EMR), a web service that makes it easy to quickly and cost-effectively

process vast amounts of data.46 Apache Spark on Hadoop YARN is natively

supported in Amazon EMR, and you can quickly and easily create managed

Apache Spark clusters from the AWS Management Console, AWS CLI, or the

Amazon EMR API.

You can simply create a cluster with Spark installed on EMR.47 Now, with Spark

readily available on the EMR cluster, you can install the Spark Cassandra driver

and its dependencies to create Spark applications that talk to your Cassandra

cluster in AWS.

Following is simple example code that you can run on the Spark Shell on the

EMR master node to get the count of items in a Cassandra column family named

kv in a keyspace test.

import org.apache.spark.SparkConf

val conf = new

SparkConf(true).set("spark.cassandra.connection.host",

"<Cassandra Listen IP Address>")

https://github.com/datastax/spark-cassandra-connector
https://aws.amazon.com/elasticmapreduce/
https://aws.amazon.com/elasticmapreduce/
https://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-spark-launch.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 45 of 52

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

sc.stop

val sc = new SparkContext("local[2]", "test", conf)

import com.datastax.spark.connector._

val rdd = sc.cassandraTable("test", "kv")

println(rdd.count)

Amazon EMR also allows you to launch Apache Zeppelin as a sandbox

application.48 Zeppelin is an open source GUI that creates interactive and

collaborative notebooks for data exploration. Apache Zeppelin supports an

interpreter for Cassandra. You can configure this interpreter in Zeppelin on the

Amazon EMR cluster. Doing this will allow you to create interactive notebooks to

run Cassandra Query Language (CQL) on Cassandra from Zeppelin to visualize

the data in your Cassandra cluster on AWS.

Optimizing Data Transfer Costs
As discussed preceding, we recommend that intraregion communication within

the cluster happens with private IP addresses by setting the listen_address and

rpc_address parameters to private IP addresses instead of public IP addresses.

However, data transfer charges between EC2 instances always apply when you

use public IP addresses for communication. With private IP addresses, charges

apply when the communication is between instances in different Availability

Zones.

To simplify data transfer and keep costs down, you can perform a number of

optimizations. For example, normally when a request is made from a client, the

request is sent to any node in the cluster that acts as a coordinator. The

coordinator will then send the data to the nodes that own the keyspace. However,

the coordinator is an additional step in the request workflow, which can be

avoided in most cases by using a client that is token-aware. This approach can

potentially avoid this additional hop and increase performance. To find a client

driver for this approach, see this list of DataStax supported client drivers.49

http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-sandbox.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-sandbox.html
http://www.planetcassandra.org/client-drivers-tools/#%20DataStax%20Supported%20Drivers

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 46 of 52

To further optimize by routing requests to the same Availability Zone as the

client, consider Astyanax, a Java client for Cassandra that was open-sourced by

Netflix (among several other tools).50 This client was specifically written with

EC2 in mind and allows you to route requests to the same Availability Zone as the

client. For example, if your client is in the US East (N. Virginia) region, that is us-

east-1a, the client can identify the nodes responsible for the key range and the

node that is in the same Availability Zone as the client (us-east-1a in this

example) and send the request to that node. This approach can help with

performance and optimize data transfer costs by avoiding extra hops.

You can also optionally look at whether internode compression is enabled or not.

It is set to all by default, which means that all communication between nodes is

compressed. This approach can reduce the amount of network traffic sent across

the network pipe and can help with optimizing data transfer costs. However,

using this parameter places a low overhead on CPU. You should test to make sure

that this parameter is not affecting the performance of your cluster before using

it.

Disabling read repair, a property of the table, will further reduce cross-AZ costs.

When this property is enabled, some requests will “over-read” from more nodes

than required by the specified consistency level. This functionality lets them

repair inconsistencies in the background. The speculative retry feature can also

result in more data being read, but in this case it might be running because the

read operation is taking a long time to complete.

Benchmarking Cassandra
You might want to benchmark Cassandra performance with multiple instance

types and configurations before you decide on the right configuration for your

cluster. Cassandra-stress is a great tool for benchmarking Cassandra. We highly

recommend using this tool to benchmark Cassandra on AWS.51

If you want to benchmark Cassandra against other NoSQL engines with a

common tool, you can use YCSB.52 This tool has support for multiple NoSQL

engines, including but not limited to Amazon DynamoDB, MongoDB, and

Aerospike.

https://github.com/Netflix/astyanax/wiki/Getting-Started
http://docs.datastax.com/en/cassandra/2.1/cassandra/tools/toolsCStress_t.html
https://github.com/brianfrankcooper/YCSB

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 47 of 52

If you want to compare providers through benchmarking, it is generally a good

idea to make an apples-to-apples comparison. To make this happen, some of the

common things to consider are the following:

1. You should make sure that the Cassandra cluster and the clients from

which the benchmarking is run are on the same provider. For example,

you might make sure your Cassandra cluster and clients are running in

AWS instead of running a Cassandra cluster on AWS and the clients on

another provider.

2. You should provision an equivalent amount of resources such as CPU,

memory, IOPS, and network. If you cannot achieve equivalence because of

the unavailability of comparable instance types between providers, make

sure this lack of equivalence is reflected, adjusted for, and accounted for in

the results.

3. You should make sure that the configuration parameters for Cassandra,

such as the environment and YAML settings, are the same when you are

building clusters with multiple providers for benchmarking.

You should ensure that all the optimizations (if any) performed on one platform

should be replicated and performed on the other platform to get a fair

comparison.

Using the Cassandra Quick Start

Deployment
AWS Quick Start reference deployments help you deploy fully functional

enterprise software on the AWS cloud, following AWS best practices for security

and availability.53

We provide a Cassandra Quick Start that automatically launches and runs a

Cassandra cluster on AWS. It automates the deployment through an AWS

CloudFormation template, and enables you to launch the Cassandra cluster either

into your own Amazon VPC or into a newly created Amazon VPC. Customization

options include the Cassandra version you want to deploy (version 2.0 or 2.1), the

number of seeds and nonseeds you want to launch to ensure high availability

(one to three seeds), automatic node replacement with Auto Scaling, OpsCenter

http://aws.amazon.com/quickstart/

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 48 of 52

for monitoring, NAT gateway integration with the VPC configuration, and a

choice of Java versions (Java 7 or Java 8).

The Cassandra Quick Start takes approximately 15 minutes to deploy. You pay

only for the AWS compute and storage resources you use—there is no additional

cost for running the Quick Start. The templates are available for you to use today.

The CloudFormation template to build the cluster in a new VPC is available here,
54and the CloudFormation template to build the cluster in an existing VPC is

available here.55

Conclusion
The AWS cloud provides a unique platform for running NoSQL applications,

including Cassandra. With capacities that can meet dynamic needs, costs based

on use, and easy integration with other AWS products, such as Amazon

CloudWatch, AWS Cloud Formation, and Amazon EBS, the AWS cloud enables

you to run a variety of NoSQL applications without having to manage the

hardware yourself. Cassandra, in combination with AWS, provides a robust

platform for developing scalable, high-performance applications.

Contributors
The following individuals and organizations contributed to this document:

 Babu Elumalai, Solutions Architect, Amazon Web Services

Further Reading
For additional help, please consult the following sources:

 Regions and Availability Zones

 Amazon VPC Documentation

 Amazon EBS

 Amazon EC2 FAQ

https://s3.amazonaws.com/quickstart-reference/cassandra/latest/templates/Cassandra_EBS_VPC.json
https://s3.amazonaws.com/quickstart-reference/cassandra/latest/templates/Cassandra_EBS_NoVPC.json
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://aws.amazon.com/ec2/faqs/

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 49 of 52

 AWS Security Center

 DataStax Cassandra 2.1 Documentation  

Notes

1 https://aws.amazon.com/dynamodb/

2 https://aws.amazon.com/s3/

3 http://docs.datastax.com/en/landing_page/doc/landing_page/current.html

4 https://en.wikipedia.org/wiki/Log-structured_merge-tree

5 https://en.wikipedia.org/wiki/Quorum_(distributed_computing)

6https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_how_

cache_works_c.html

7https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_about_hh_c.

html

8 http://docs.datastax.com/en/cassandra/2.1/cassandra/tools/toolsRepair.html

9https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsTuneJV

M.html

10 https://aws.amazon.com/about-aws/global-infrastructure/

11 https://aws.amazon.com/about-aws/global-infrastructure/

12https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architect

ureSnitchesAbout_c.html

13https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architect

ureSnitchEC2_t.html

14https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architect

ureSnitchEC2MultiRegion_c.html

15 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-

networking.html#enhanced_networking_instance_types

http://aws.amazon.com/security/
http://docs.datastax.com/en/cassandra/2.1/cassandra/gettingStartedCassandraIntro.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
http://docs.datastax.com/en/landing_page/doc/landing_page/current.html
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Quorum_(distributed_computing
https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_how_cache_works_c.html
https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_how_cache_works_c.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_about_hh_c.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_about_hh_c.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/tools/toolsRepair.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsTuneJVM.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsTuneJVM.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchesAbout_c.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchesAbout_c.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchEC2_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchEC2_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchEC2MultiRegion_c.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchEC2MultiRegion_c.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html#enhanced_networking_instance_types
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html#enhanced_networking_instance_types

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 50 of 52

16http://docs.datastax.com/en/cql/3.1/cql/cql_reference/create_keyspace_r.ht

ml

17 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-classiclink.html

18 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-

eni.html#AvailableIpPerENI

19http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.ht

ml#EBSVolumeTypes_gp2

20http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.ht

ml#EBSVolumeTypes_piops

21http://docs.datastax.com/en/cassandra/2.1/cassandra/planning/architectureP

lanningEC2_c.html

22 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html

23 https://aws.amazon.com/ec2/pricing/

24 https://www.youtube.com/watch?v=1R-mgOcOSd4

25 https://aws.amazon.com/ec2/pricing/

26http://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consi

stency_c.html

27 http://stomp.github.com/

28http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/WhatIsAuto

Scaling.html

29http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScaling

Group.html

30 https://aws.amazon.com/articles/2781451301784570

31 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-

eip.html

32 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

33 https://blogs.aws.amazon.com/security/post/Tx3N8GFK85UN1G6/Securely-

connect-to-Linux-instances-running-in-a-private-Amazon-VPC

34 https://aws.amazon.com/kms/

35http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

http://docs.datastax.com/en/cql/3.1/cql/cql_reference/create_keyspace_r.html
http://docs.datastax.com/en/cql/3.1/cql/cql_reference/create_keyspace_r.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-classiclink.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#EBSVolumeTypes_gp2
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#EBSVolumeTypes_gp2
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#EBSVolumeTypes_piops
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#EBSVolumeTypes_piops
http://docs.datastax.com/en/cassandra/2.1/cassandra/planning/architecturePlanningEC2_c.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/planning/architecturePlanningEC2_c.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html
https://aws.amazon.com/ec2/pricing/
https://www.youtube.com/watch?v=1R-mgOcOSd4
https://aws.amazon.com/ec2/pricing/
http://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
http://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
http://stomp.github.com/
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/WhatIsAutoScaling.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/WhatIsAutoScaling.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingGroup.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingGroup.html
https://aws.amazon.com/articles/2781451301784570
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://blogs.aws.amazon.com/security/post/Tx3N8GFK85UN1G6/Securely-connect-to-Linux-instances-running-in-a-private-Amazon-VPC
https://blogs.aws.amazon.com/security/post/Tx3N8GFK85UN1G6/Securely-connect-to-Linux-instances-running-in-a-private-Amazon-VPC
https://aws.amazon.com/kms/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 51 of 52

36https://docs.datastax.com/en/cassandra/2.1/cassandra/security/secureSslEnc

ryptionTOC.html

37https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_monit

oring_c.html

38 http://aws.amazon.com/articles/5472675506466066

39http://docs.datastax.com/en/cassandra/2.1/cassandra/security/secureSSLNod

eToNode_t.html

40https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_about_hh_c

.html

41 https://github.com/Netflix/Priam

42 https://pypi.python.org/pypi/tablesnap

43 https://d0.awsstatic.com/whitepapers/managing-your-aws-infrastructure-at-

scale.pdf

44 https://aws.amazon.com/directconnect/

45 https://github.com/datastax/spark-cassandra-connector

46 https://aws.amazon.com/elasticmapreduce/

47https://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-

spark-launch.html

48http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-

sandbox.html

49 http://www.planetcassandra.org/client-drivers-

tools/#%20DataStax%20Supported%20Drivers

50 https://github.com/Netflix/astyanax/wiki/Getting-Started

51http://docs.datastax.com/en/cassandra/2.1/cassandra/tools/toolsCStress_t.ht

ml

52 https://github.com/brianfrankcooper/YCSB

53 http://aws.amazon.com/quickstart/

54https://s3.amazonaws.com/quickstart-

reference/cassandra/latest/templates/Cassandra_EBS_VPC.json

55https://s3.amazonaws.com/quickstart-

reference/cassandra/latest/templates/Cassandra_EBS_NoVPC.json

https://docs.datastax.com/en/cassandra/2.1/cassandra/security/secureSslEncryptionTOC.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/security/secureSslEncryptionTOC.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_monitoring_c.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_monitoring_c.html
http://aws.amazon.com/articles/5472675506466066
http://docs.datastax.com/en/cassandra/2.1/cassandra/security/secureSSLNodeToNode_t.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/security/secureSSLNodeToNode_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_about_hh_c.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_about_hh_c.html
https://github.com/Netflix/Priam
https://pypi.python.org/pypi/tablesnap
https://d0.awsstatic.com/whitepapers/managing-your-aws-infrastructure-at-scale.pdf
https://d0.awsstatic.com/whitepapers/managing-your-aws-infrastructure-at-scale.pdf
https://aws.amazon.com/directconnect/
https://github.com/datastax/spark-cassandra-connector
https://aws.amazon.com/elasticmapreduce/
https://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-spark-launch.html
https://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-spark-launch.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-sandbox.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-sandbox.html
http://www.planetcassandra.org/client-drivers-tools/#%20DataStax%20Supported%20Drivers
http://www.planetcassandra.org/client-drivers-tools/#%20DataStax%20Supported%20Drivers
https://github.com/Netflix/astyanax/wiki/Getting-Started
http://docs.datastax.com/en/cassandra/2.1/cassandra/tools/toolsCStress_t.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/tools/toolsCStress_t.html
https://github.com/brianfrankcooper/YCSB
http://aws.amazon.com/quickstart/
https://s3.amazonaws.com/quickstart-reference/cassandra/latest/templates/Cassandra_EBS_VPC.json
https://s3.amazonaws.com/quickstart-reference/cassandra/latest/templates/Cassandra_EBS_VPC.json
https://s3.amazonaws.com/quickstart-reference/cassandra/latest/templates/Cassandra_EBS_NoVPC.json
https://s3.amazonaws.com/quickstart-reference/cassandra/latest/templates/Cassandra_EBS_NoVPC.json

Amazon Web Services – Apache Cassandra on AWS January 2016

Page 52 of 52

