
Running Adobe Experience
Manager on AWS

July 2016

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 2 of 23

© 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments, conditions
or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities
and liabilities of AWS to its customers are controlled by AWS agreements, and
this document is not part of, nor does it modify, any agreement between AWS
and its customers.

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 3 of 23

Contents
Abstract 4

Introduction 4

Why Use AEM on AWS? 5

Flexible Capacity 5

Broad Set of Capabilities 5

Adobe Experience Manager Overview 7

Capabilities 7

Architecture 8

Repositories 9

AEM Implementation on AWS 9

Architecture Options 10

Architecture Sizing 11

Load Balancing 12

High Availability 13

Scaling 13

Content Delivery 14

Dynamic Content 15

Security 15

Digital Asset Management 16

Automated Deployment 17

Automated Operations 18

Additional AWS Services 19

Amazon Elastic File System 19

Personalization and Targeting 20

Mobile 20

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 4 of 23

Conclusion 20

Contributors 20

Further Reading 21

Notes 22

Abstract
Adobe Experience Manager (AEM) is a leader in digital experience delivery. It is a
powerful, enterprise-ready solution that provides businesses with an easy way to
deliver immersive web experiences, build a brand, drive demand, and extend
reach to audiences across the globe. Amazon Web Services (AWS) is a leader in
cloud services and infrastructure providing a flexible, cost effective, and easy-to-
use computing platform. Combining AEM and AWS can be an effective method to
deliver personalized digital experiences to your customers.

This whitepaper outlines some of the main benefits and describes some best
practices that should be applied when deploying AEM on AWS. The content
targets technical leaders responsible for deploying and managing AEM, allowing
them to get started quickly on deploying AEM on AWS.

Introduction
Delivering a fast, secure, and seamless experience is essential in today’s digital
marketing environment. The need to reach a broader audience across all devices
is essential. A shorter time to market can be a differentiator from competitors.
Companies are turning to cloud-based solutions to boost business agility, harness
new opportunities, and gain cost efficiencies. The first section of this whitepaper
summarizes some of the key benefits of using AEM on AWS, and highlights how
Advanced AWS Partner Network (APN) Consulting Partner Razorfish uses AEM
on AWS. We then briefly describe some of the key components of AEM, providing
the foundation for the discussion of AEM on AWS implementation best practices.

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 5 of 23

With any deployment on AWS, there are many different considerations and
options, so your approach might be different from the approach we walk through
in this paper.

Why Use AEM on AWS?
AEM, as a Web Experience Manager (WEM) platform, can take advantage of
some the benefits of the AWS platform, including global capacity, security,
reliability, fault tolerance, programmability, and usability. This section
discusses several ways in which deploying AEM on AWS is different from
deploying it to an on-premises infrastructure.

Flexible Capacity
One of the benefits of using the AWS Cloud is the ability to scale up and down as
needed. When using AEM, you have full freedom to scale all your environments
quickly and cost effectively, giving you opportunities to establish new
development, quality assurance (QA), and performance testing environments.

AEM is frequently used in scenarios that have unknown or significant variations
in traffic volumes. The on-demand nature of the AWS platform allows you to
scale your workloads to support your unique traffic peaks during key events, such
as Black Friday (the big shopping day after the US Thanksgiving holiday) or the
US National Football League (NFL) Super Bowl.

Flexible capacity also streamlines upgrades. At this point, many AEM clients are
upgrading from AEM 5.x to AEM 6.1. AWS makes it very easy to set up a parallel
environment, so you can migrate and test your application and content in a
production-like environment. Performing the actual production upgrade itself
can then be as simple as the change of a domain name system (DNS) entry.

Broad Set of Capabilities
As a leading web content management system solution, customers often use AEM
as the foundation of their digital marketing platform. Running AEM on AWS
provides customers with the benefits of easily integrating third-party solutions
for auxiliary experiences such as blogs, and provide additional tools for
supporting mobile delivery, analytics, and big data management. You can

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 6 of 23

integrate the open and extensible APIs of both AWS and AEM to create powerful
new combinations for your firm. Razorfish uses AEM on AWS with their turnkey
digital marketing platform, Fluent, to help organizations market across multiple
channels in the areas of analytics, targeting and experience management.

With solutions like Amazon Simple Notification Service (SNS), Amazon Simple
Queue Service (SQS), and AWS Lambda, AEM functionality can easily be
integrated with other third-party functionality in a decoupled fashion. Examples
of this can be seen for a Content Publishing Integration Scenario in Figure 1 and
for a Workflow Integration Scenario in Figure 2.

Figure 2: Workflow Integration Scenario

Figure 1: Content Publishing Integration Scenario

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 7 of 23

AWS can also provide a clean, manageable, and auditable approach to decoupled
integration with backend systems such as customer relationship management
(CRM) and commerce systems. Figure 3 shows an Enterprise Systems Integration
scenario.

Figure 3: Enterprise Systems Integration Scenario

Leveraging AEM on AWS enables the creation of a digital marketing foundation
that not only delivers the full set of capabilities, but also does so using a scalable,
de-coupled, and micro services-based solution.

Adobe Experience Manager Overview
This section highlights some of the key technical elements for Adobe Experience
Manager and offers some best practice recommendations.

Capabilities
Adobe Experience Manager (AEM) has a broad set of capabilities for digital
experience delivery. Some of the key use cases for AEM are content management,
experience management and personalization, digital asset management,
communities, mobile applications, and in-store digital experiences. The majority
of use cases for deployments are content, asset, and experience management.
This whitepaper will focus on those deployment scenarios.

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 8 of 23

This whitepaper focuses on AEM 6.1 (released May 2015), but is applicable to the
newly released AEM version 6.2 as well.

Architecture
A standard AEM architecture consists of three environments: author, publish,
and dispatcher. Each of these environments consists of one or more instances.

The author environment is used for creating and managing the content and
layout of an AEM experience. It provides functionality for reviewing and
approving content updates, and publishing approved versions of content to the
publish environment.

The publish environment delivers the experience to the intended audience. It
renders the actual pages, with an ability to personalize the experience based on
audience characteristics or targeted messaging.

The author and publish instances are Java web applications that have identical
installed software. They are differentiated by configuration only.

The third component in an AEM architecture is the dispatcher. This a caching
and/or load balancing tool that helps realize a fast and dynamic web authoring
environment. For caching, the dispatcher works as part of an HTTP server, such
as Apache, with the aim of storing (or caching) as much of the static website
content as possible and accessing the website's publisher layout engine as

Figure 4: Sample AEM Architecture

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 9 of 23

infrequently as possible. For caching, the dispatcher module uses the web server's
ability to serve static content. The dispatcher places the cached documents in the
document root of the web server.

Repositories
Within AEM, everything is content and stored in the underlying repository.
AEM’s repository is called CRX, and it implements the Content Repository API
for Java (JCR), and is based on Apache Jackrabbit Oak.

The Oak storage layer provides an
abstraction layer for the actual storage
of the content.

Currently, there are two primary1
storage implementations available in
AEM6: Tar Storage and MongoDB
Storage. The Tar storage uses tar files.
It stores the content as various types of
records within larger segments.
Journals are used to track the latest
state of the repository. The MongoDB
storage leverages MongoDB for
sharding and clustering. The repository
tree is kept in one MongoDB database where each node is a separate document.

In AEM, binary data can be stored independently from the content nodes. The
binary data is stored in a data store, whereas content nodes are stored in a node
store.

Tar Storage is the most common approach and recommended by Adobe for the
majority of the deployment scenarios, so this whitepaper will primarily focus on
this option. MongoDB Storage is currently only recommended for author
environments that require horizontal scaling2.3

AEM Implementation on AWS
In this section, we will outline key design elements for deployment AEM on AWS.

Figure 5: AEM Storage Options

https://docs.adobe.com/docs/en/aem/6-1/develop/the-basics/contributing-to-cq.html#Everything%20is%20Content
https://en.wikipedia.org/wiki/Content_repository_API_for_Java
https://jackrabbit.apache.org/oak/

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 10 of 23

Architecture Options
A first design decision for any implementation on AWS is to determine the
Amazon Virtual Private Cloud (VPC) layout. For simplicity, we will assume a
basic setup with one author and two publish AEM instances.

VPC with Public Subnets
In this architecture, all AEM components are deployed in public subnets. The
publish instances are spread across two AWS Availability Zones. Each of the AEM
components has its own security group (and uses Auto Scaling, if applicable). To
ensure the right security for publish and author instances, it is critical to follow
Adobe’s security checklist for AEM4.

Figure 6: Solution with Public Subnets

VPC with Public and Private Subnets
In this architecture, the web server and the dispatcher are deployed in the public
subnets. Author and publish instances are deployed in private subnets. Although
AEM will still need to be configured according to Adobe’s checklist, this will

https://docs.adobe.com/docs/en/aem/6-1/administer/security/security-checklist.html

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 11 of 23

create an additional layer of security implemented through the VPC architecture.
However, because the author instance is not reachable through a public subnet, a
virtual private network (VPN) connection will be necessary to allow content
authors to interact with the system.

It’s necessary to use NAT instances or a VPC NAT gateway to provide outbound
access for the AEM publish and author instances for any automated retrieval
updates and security patches. In addition, AEM’s Link Checker and certain cloud
services need outbound access.

Figure 7: Architecture with Public and Private Subnets

Instead of a VPN connection for authoring, an alternative approach can be
leveraging an author dispatcher server that is only accessible to content
administrators.

Architecture Sizing
For AEM, the right instance type depends on the usage scenario. For author and
publish instances in the most common publishing scenario, a solid mix of
memory, CPU, and I/O performance is necessary. Therefore, Amazon Elastic
Compute Cloud (Amazon EC2) General Purpose M3 or M4 instances are good

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 12 of 23

targets for these environments, depending on sizing. M4 instances support
enhanced networking and are Amazon Elastic Block Store (Amazon EBS)
optimized by default.

The dispatcher is installed on a web server, and it is a key caching layer.
Therefore, sizing memory and compute is important, but optimization for I/O is
critical for this tier.

For all these instances, Amazon EBS optimization is important. Amazon EBS
volumes on which AEM is installed should use either GP2 volumes or provisioned
input/output operations per second (IOPS) volumes. This will guarantee a
specific level of performance and lower latency for those operations.

The specific sizing for the number of servers you have depends on your AEM use
case (e.g., experience management, digital asset management, etc.) and the level
of caching that should be applied. Detailed calculations can be made with
guidelines outlined on the Adobe support site5.

Load Balancing
A key component in the architecture is Elastic Load Balancing. In an AEM setup,
Elastic Load Balancing is configured to balance traffic to the dispatchers. By
default, a load balancer distributes incoming requests evenly across its enabled
Availability Zones (AZs). To ensure that a load balancer distributes incoming
requests evenly across all back-end instances, regardless of the Availability Zone
that they are in, enable cross-zone load balancing.

For authenticated AEM experiences, authentication is maintained by a login
token. When a user logs in, the token information is stored under
the .tokens node of the corresponding user node in the repository. The value of
the token (i.e., the session ID) is also stored in the browser as a cookie
named login-token. In that case, the load balancer should be configured for
sticky sessions, routing requests with the login-token cookie to the same instance.
Starting with version 6.16, AEM can be configured to recognize the authentication
cookie across all publish instance. However, it also requires that all relevant user
session information (e.g., a shopping cart) is available across all publish
instances.

https://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/about-aws/global-infrastructure/

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 13 of 23

Elastic Load Balancing can be used in front of the dispatchers to provide a Single
CNAME URL for the application. The load balancer, in conjunction with AWS
Certificate Manager7 can be used to provide an HTTPS access and to offload SSL.
By using the load balancer you can further secure your website deployment by
moving the publisher instances into a private subnet, allowing access from only
the load balancer. The load balancer can also translate the port access from port
80 to the default publish port 4503.

High Availability
For a highly available AEM solution, the architecture should be set up to leverage
AWS strengths. Each instance in the AEM cluster should be set up with the
Amazon EC2 Auto Recovery8 feature. Additionally, when the cluster is built in
conjunction with a load balancer, Auto Scaling can be used to automatically
provision nodes across multiple Availability Zones9. We recommend that you
provision across multiple Availability Zones for high availability and use multiple
AWS Regions to address global deployment considerations as needed. Amazon
Route 53 can be set up to perform DNS failover based on health checks in a
multi-region deployment.

Scaling
Different components of AEM require different approaches to scaling. The
virtually unlimited capacity of AWS can be used to provide the necessary capacity
for your application needs. A simple way to accomplish this is to create separate
Amazon Machine Images (AMIs) for the publish instance and author instance.
Two separate launch configurations can be created using these AMIs and
included in separate Auto Scaling groups.

These launch configurations can be invoked programmatically or manually to add
or delete instance for each of the pools—publish and author. For faster startup
and synchronization, you can place the AEM installation on a separate Amazon
EBS volume. By taking frequent snapshots of the volume and attaching the
snapshots to the newly launched instances, the need to replicate large amounts of
data from the author can be cut down. In their startup process, the publish
instance can then trigger author—publish replication to fully ensure the latest
content.

https://aws.amazon.com/certificate-manager/
https://aws.amazon.com/certificate-manager/
https://aws.amazon.com/blogs/aws/new-auto-recovery-for-amazon-ec2/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/route53/
https://aws.amazon.com/route53/

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 14 of 23

For the dispatcher, Auto Scaling is relatively straightforward because no state is
managed on the dispatcher. However, on a content publish event, the dispatcher
gets called from the author or publish instance to invalidate the cache. Newly
launched instances will need to notify author or publish instances to receive
future invalidation calls. One approach is to pair and co-locate dispatchers with a
publish instance. In that case, the cache invalidation call becomes a localhost call
from the publish instance.

Figure 8: Co-located Publish and Web Server+Dispatcher Instances

If you’re using MongoDB storage, Auto Scaling becomes more straightforward,
because the repository is stored in the database.

Content Delivery
AEM on AWS can benefit from leveraging Amazon CloudFront, a content delivery
network (CDN). Sites can utilize a CDN in addition to the standard AEM
dispatcher caching layer. When you use a CDN, you need to consider how content
is invalidated and refreshed in the CDN when content is updated.

One approach is to build a custom invalidation workflow step, an AEM
replication event listener, or a dispatcher monitor service (using the

https://aws.amazon.com/cloudfront/
https://docs.adobe.com/docs/en/dispatcher/disp-config.html#Using%20custom%20invalidation%20scripts

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 15 of 23

/invalidateHandler property) that communicates with the Amazon CloudFront
API. When using this approach, take care to delay the cache invalidation until
content has been replicated to all publish instances.

Using cache control headers in combination with times to live (TTLs) provides
another method of updating cached assets. The common approach is to configure
Amazon CloudFront to have a minTTL of 0 and set cache-control headers (i.e.,
s-max-age and max-age) in Apache web server for all content. Amazon
CloudFront will check for changed content every s-maxage, assuming a request
is made to it; browsers will cache content for s-maxage. As a result, CDN
invalidations will be effective every s-maxage seconds10.

In this scenario, special care should be taken with code deployments that
invalidate all Amazon CloudFront assets.

Dynamic Content
The dispatcher is the caching layer with the AEM product. It allows for defining
caching rules at the web server layer. To realize the full benefit of the dispatcher,
pages should be fully cacheable. Any element that isn’t cacheable will “break” the
cache functionality.

To incorporate dynamic elements in a static page, the recommended approach is
to use client-side JavaScript, Edge Side Includes (ESI), or web server level Server
Side Includes (SSI). Within an AWS environment, Edge Side Includes can be
configured using a solution such as Varnish, replacing the dispatcher.

Security
Security is an important first consideration in any web-hosting environment. The
security of the AEM hosting environment can be broken down into two areas:
application security and infrastructure security. A crucial first step for application
security is to follow the security checklist for AEM and the dispatcher. You want
to prevent Denial of Service (DoS) attacks, and for that the mod_rewrite11
module in Apache Web Server is often used to prevent the request passing
through to the dispatcher or publish instance. In addition, the Apache
mod_security module12 can provide additional security against XSS attacks.

https://docs.adobe.com/docs/en/dispatcher/disp-config.html#Using%20custom%20invalidation%20scripts
https://www.varnish-cache.org/
https://docs.adobe.com/docs/en/aem/6-1/administer/security/security-checklist.html
https://docs.adobe.com/docs/en/dispatcher/security-checklist.html

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 16 of 23

From an infrastructure level, AWS provides many tools to lock down your
environment. One of the core components of network security is Amazon VPC13.
This service provides multiple layers of network security for your application
such as public and private subnets, security groups, and network access control
lists for subnets.

Amazon CloudFront can be used to provide some crucial security benefits: 1) you
can offload direct access to your backend infrastructure, and 2) using the web
application firewall (WAF) provided by the AWS WAF14 service, you can apply
rules to prevent the application from getting compromised by scripted attacks.
The same rules that are encoded in Apache mod_security on the dispatcher can
be moved or replicated in AWS WAF. Because AWS WAF integrates with Amazon
CloudFront CDN, this enables earlier detection, minimizing overall traffic and
impact. Additionally, AWS WAF provides centralized control, automated
administration, and real-time metrics.

AWS also provides audit tools such as AWS Trusted Advisor15. AWS Trusted
Advisor inspects your AWS environment and makes recommendations for saving
money, improving system performance and reliability, and security. We also
recommend that you consider tools such as Amazon Inspector. Amazon Inspector
is an automated security assessment service that helps improve the security and
compliance of applications deployed on AWS. Amazon Inspector automatically
assesses applications for vulnerabilities or deviations from best practices. After
performing an assessment, Amazon Inspector produces a detailed report with
prioritized steps for remediation. This can support system management and gives
security professionals the necessary visibility into vulnerabilities that need to be
fixed. In addition to Amazon Inspector, other third-party products such as Burp
Suite or Qualys SSL Test (for certificate validation) can be used.

Finally, having an audit log of all API actions and configuration changes can be
useful in determining what changed and by whom. AWS CloudTrail and AWS
Config provide you the capability to capture extensive audit logs. We recommend
that you enable these services in your hosting environment.

Digital Asset Management
AEM includes a Digital Asset Management (DAM) solution. When planning for
your AWS architecture, you should evaluate the potential use of the DAM

https://aws.amazon.com/premiumsupport/trustedadvisor/
https://portswigger.net/burp/
https://portswigger.net/burp/
https://www.ssllabs.com/ssltest/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/config/
https://aws.amazon.com/config/

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 17 of 23

solution as part of your planning. With DAM usage, the number of large assets
usually increases and often involves resource intensive processes such as image
transformations and renditions. Various architecture options should be
considered depending on the scenario, and they are described in detail in
Deploying Adobe Experience Manager DAM: Architecture blueprints and best
practices.16.

You can find details for sizing for a DAM solution in the Adobe AEM Manuals17. A
common scenario to manage server utilization is to leverage a separate server for
all resource-intensive digital asset management tasks. Many of the
transformations utilize FFmpeg or ImageMagick. If necessary, you can create an
Auto Scaling configuration to offload these processes.

Binary data can be stored independently from the content nodes in AEM. When
deploying on AWS, the binary data store can be Amazon Simple Storage Service
(Amazon S3)18, simplifying management and backups19. Also, the binary data
store can then be shared across author instances and even between author and
publish instances, reducing overall storage and data transfer requirements.

Automated Deployment
AWS provides API access to all AWS services, and Adobe does this for AEM as
well. Many of the various commands to deploy code or content, or to create
backups, can be invoked through an HTTP service interface20. This allows for a
very clean organization of the continuous integration and deployment process
with the use of Jenkins as a central hub, invoking AEM functionality through
CURL or similar commands.

Jenkins can support manual, scheduled, and triggered deployments, and can be
the central point for your AEM on AWS deployment. If necessary, additional
automation can be enabled using the Jenkins AWS CloudFormation plugin21,
enabling the creation of a complete environment from the Jenkins console.

https://helpx.adobe.com/content/dam/help/attachments/white3.pdf
https://helpx.adobe.com/content/dam/help/attachments/white3.pdf
https://www.ffmpeg.org/
http://www.imagemagick.org/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://jenkins-ci.org/

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 18 of 23

Figure 9: Example CI Setup for an AEM Jenkins Architecture

Jenkins can be installed on an Amazon EC2 instance, pulling code from AWS
CodeCommit or an alternative code management solution.

Automated Operations
One of the key benefits of running AEM on AWS is the streamlined AEM
Operations process.

To provision instances, AWS CloudFormation or AWS OpsWorks can be
leveraged to fully automate the deployment process, from setting up the
architecture to provisioning the necessary instances. Using the AWS
CloudFormation embedded stacks functionality22, scripts can be organized to
support the different architectures outlined in the earlier sections.

When using AEM’s Tar Storage, repository content is stored on the file system.
To create an AEM backup, a file system snapshot must be made. This is done
easily on AWS through Amazon EBS snapshots. To ensure a consistent backup,
use tools such as fsfreeze23 to suspend file system I/O. With MongoDB storage,
backing up the MongoDB database will create the backup. If the data store is
configured outside the main repository, this will need to be backed up separately.

https://aws.amazon.com/codecommit/
https://aws.amazon.com/codecommit/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/opsworks/

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 19 of 23

When using Amazon S3 for data storage, it is important to set the appropriate
policies to prevent data loss from accidental deletions or overwrites. Additionally,
a cross-region bucket copy can be used to provide appropriate disaster recovery
for your application. Because files in the file data store directory are immutable,
they can be backed up incrementally (potentially using rsync or aws cli sync) or
after running the online backup.

The Amazon CloudWatch dashboard can support the creation of a consolidated
monitoring dashboard, allowing you to view the various performance statistics in
one single place. Custom metrics can also be generated and incorporated in the
CloudWatch dashboard.

Figure 4: Sample custom metric view

Additional AWS Services
This section highlights a few additional services and capabilities you can leverage
from both the AEM platform and AWS to add further value to your AEM
deployment on AWS.

Amazon Elastic File System
Amazon Elastic File System (Amazon EFS) is a file storage service for Amazon
EC2 instances. Multiple Amazon EC2 instances can access an Amazon EFS file
system at the same time, providing a common data source for workloads and
applications running on more than one instance. Some other considerations are
as follows:

• Tar Storage combined with Amazon EFS can create new opportunities for
streamlining the creation of highly available instances.

• Amazon EFS can be an alternative to Amazon S3 for data storage.

http://docs.aws.amazon.com/cli/latest/reference/s3/sync.html
https://aws.amazon.com/efs/

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 20 of 23

• Amazon EFS can provide new options for offloading AEM tasks, such as
rendition generations.

Personalization and Targeting
AEM offers tools to manage targeting within experiences delivered through the
solution. Adobe also has complementary products, which integrate well with
AEM, that further personalize and target the experience for customers. Combined
with AWS solutions such as Amazon Kinesis, Amazon Machine Learning, and
AWS Lambda, a powerful targeting engine can be created to deliver 1:1
personalization.

Mobile
AEM provides capabilities to support mobile app and mobile web deployments.
AWS has launched a number of offerings targeting mobile users, including AWS
Mobile Hub, AWS Device Farm, AWS Mobile Analytics, and Amazon Simple
Notification Service (SNS) mobile push notifications. Combining these can create
a full turnkey solution to create rich mobile experiences. AEM 6.1 already
includes a connector for Amazon SNS mobile push notifications.

Conclusion
Using Adobe Experience Manager on AWS can provide you with a great platform
and foundation for delivering digital experiences. As you look to deploy AEM on
AWS, we recommend that you consider the best practices and guidance outlined
in this document, and consult the additional references outlined in the Further
Reading section that follows.

Contributors
The following individuals and organizations contributed to this document:

• Pawan Agnihotri, Solutions Architect, Amazon Web Services

• Martin Jacobs, GVP, Technology, Razorfish

https://aws.amazon.com/kinesis/
https://aws.amazon.com/machine-learning/

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 21 of 23

Further Reading
For additional help, please consult the following sources:

• Adobe Experience Manager 6.1 Documentation

• AWS Documentation

http://docs.adobe.com/content/docs/en/aem/6-1.html
http://aws.amazon.com/documentation/

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 22 of 23

Notes

1 IBM DB2 10.5, Oracle Database 12c and MySQL 5.5 are available in restricted
support configuration.

2 https://docs.adobe.com/content/docs/en/aem/6-1/deploy/best-
practices/performance/_jcr_content/par/download/file.res/AEM_Scalability_
White_Paper_FINAL - 06122015je.pdf

3 MongoDB Storage is also an option for storing User Generated Content in the
AEM Communities module.

4 https://docs.adobe.com/docs/en/aem/6-1/administer/security/security-
checklist.html

5 https://docs.adobe.com/docs/en/aem/6-1/manage/hardware-sizing-
guidelines.html

6 https://docs.adobe.com/docs/en/aem/6-1/administer/security/encapsulated-
token.html

7 https://aws.amazon.com/certificate-manager/

8 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-
recover.html

9
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.Region
sAndAvailabilityZones.html

10
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Expi
ration.html#ExpirationDownloadDist

11 http://httpd.apache.org/docs/current/mod/mod_rewrite.html

12 https://www.modsecurity.org

13 https://aws.amazon.com/vpc/

14 https://aws.amazon.com/waf/

15 https://aws.amazon.com/premiumsupport/trustedadvisor/

16 https://helpx.adobe.com/content/dam/help/attachments/white3.pdf

https://docs.adobe.com/docs/en/aem/6-1/deploy/technical-requirements.html#Storage%20&%20Persistence
https://docs.adobe.com/docs/en/aem/6-1/deploy/technical-requirements.html#Storage%20&%20Persistence

Amazon Web Services – Running Adobe Experience Manager on AWS July 2016

Page 23 of 23

17 https://docs.adobe.com/docs/en/aem/6-
1/deploy/configuring/performance/assets-performance-sizing.html

18 https://aws.amazon.com/s3/

19 https://docs.adobe.com/docs/en/aem/6-1/deploy/platform/data-store-
config.html#Amazon S3 Data Store

20 https://docs.adobe.com/content/docs/en/crx/2-
3/how_to/package_manager.html#Managing Packages on the Command Line

21 https://wiki.jenkins-ci.org/display/JENKINS/AWS+Cloudformation+Plugin

22 http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-
properties-stack.html

23 https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsfr
eeze.html

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsfreeze.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsfreeze.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsfreeze.html

	Abstract
	Introduction
	Why Use AEM on AWS?
	Flexible Capacity
	Broad Set of Capabilities

	Adobe Experience Manager Overview
	Capabilities
	Architecture
	Repositories

	AEM Implementation on AWS
	Architecture Options
	VPC with Public Subnets
	VPC with Public and Private Subnets

	Architecture Sizing
	Load Balancing
	High Availability
	Scaling
	Content Delivery
	Dynamic Content
	Security
	Digital Asset Management
	Automated Deployment
	Automated Operations

	Additional AWS Services
	Amazon Elastic File System
	Personalization and Targeting
	Mobile

	Conclusion
	Contributors
	Further Reading
	Notes

